Supervised Classification of White Matter Fibers Based on Neighborhood Fiber Orientation Distributions Using an Ensemble of Neural Networks

  • Devran Ugurlu
  • Zeynep Firat
  • Ugur Ture
  • Gozde UnalEmail author
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


White matter fibers constitute the main information transfer network of the brain and their accurate digital representation and classification is an important goal of neuroscience image computing. In current clinical practice, the reconstruction of desired fibers generally involves manual selection of regions of interest by an expert, which is time-consuming and subject to user bias, expertise and fatigue. Hence, automation of the process is desired. To that end, we propose a supervised classification approach that utilizes an ensemble of neural networks. Each streamline is represented by the fiber orientation distributions in its neighborhood, while the resolved fiber orientations are obtained by generalized q-sampling imaging (GQI) and a subsequent diffusion decomposition method. In order to make the supervised fiber classification succeed in a real scenario where a substantial portion of reconstructed fiber tracts contain spurious fibers, we present a way to create an “invalid” class label through a dedicated training set creation scheme with an ensemble of networks. The performance of the proposed classification method is demonstrated on major fiber pathways in the brainstem. 30 subjects from Human Connectome Project (HCP)’s publicly available “WU-Minn 500 Subjects + MEG2 dataset” are used as the dataset.


Ensemble neural networks Supervised white matter fiber classification Brain fiber pathways 



This work was supported by TÜBITAK (The Scientific and Technological Research Council of Turkey) Grant No. 118E169.


  1. 1.
    Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)CrossRefGoogle Scholar
  2. 2.
    Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44(4), 625–632 (2000)CrossRefGoogle Scholar
  3. 3.
    Garyfallidis, E., Brett, M., Correia, M.M., Williams, G.B., Nimmo-Smith, I.: Quickbundles, a method for tractography simplification. Front. Neurosci. 6, 175 (2012)CrossRefGoogle Scholar
  4. 4.
    Garyfallidis, E., Côté, M.A., Rheault, F., Sidhu, J., Hau, J., Petit, L., Fortin, D., Cunanne, S., Descoteaux, M.: Recognition of white matter bundles using local and global streamline-based registration and clustering. NeuroImage 170, 283–295 (2018)CrossRefGoogle Scholar
  5. 5.
    Garyfallidis, E., Ocegueda, O., Wassermann, D., Descoteaux, M.: Robust and efficient linear registration of white-matter fascicles in the space of streamlines. NeuroImage 117, 124–140 (2015)CrossRefGoogle Scholar
  6. 6.
    Guevara, P., Duclap, D., Poupon, C., Marrakchi-Kacem, L., Fillard, P., Bihan, D.L., Leboyer, M., Houenou, J., Mangin, J.F.: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas. NeuroImage 61(4), 1083–1099 (2012)CrossRefGoogle Scholar
  7. 7.
    Gupta, V., Thomopoulos, S.I., Corbin, C.K., Rashid, F., Thompson, P.M.: FiberNet 2.0: an automatic neural network based tool for clustering white matter fibers in the brain. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 708–711, April 2018Google Scholar
  8. 8.
    Gupta, V., Thomopoulos, S.I., Rashid, F.M., Thompson, P.M.: FiberNet: an ensemble deep learning framework for clustering white matter fibers. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer Assisted Intervention—MICCAI 2017, pp. 548–555. Springer International Publishing, Cham (2017)CrossRefGoogle Scholar
  9. 9.
    Hagmann, P., Thiran, J.P., Jonasson, L., Vandergheynst, P., Clarke, S., Maeder, P., Meuli, R.: Dti mapping of human brain connectivity: statistical fibre tracking and virtual dissection. NeuroImage 19(3), 545–554 (2003)CrossRefGoogle Scholar
  10. 10.
    Heker, M., Amer, R., Alexandroni, G., Greenspan, H.: Automated supervised segmentation of anatomical fiber tracts using an AdaBoost framework. In: 2016 IEEE International Conference on the Science of Electrical Engineering (ICSEE), pp. 1–5 (2016)Google Scholar
  11. 11.
    Knösche, T.R., Anwander, A., Liptrot, M., Dyrby, T.B.: Validation of tractography: comparison with manganese tracing. Hum. Brain Mapp. 36(10), 4116–4134 (2015)CrossRefGoogle Scholar
  12. 12.
    Maier-Hein, K.H., et al.: The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 8(1), 1349 (2017)CrossRefGoogle Scholar
  13. 13.
    Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., Woods, R., Paus, T., Simpson, G., Pike, B., Holmes, C., Collins, L., Thompson, P., MacDonald, D., Iacoboni, M., Schormann, T., Amunts, K., Palomero-Gallagher, N., Geyer, S., Parsons, L., Narr, K., Kabani, N., Le Goualher, G., Boomsma, D., Cannon, T., Kawashima, R., Mazoyer, B.: A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (ICBM). Philos. Trans. R Soc. Lond. B Biol. Sci. 356(1412), 1293–1322 (2001)CrossRefGoogle Scholar
  14. 14.
    O’Donnell, L.J., Kubicki, M., Shenton, M.E., Dreusicke, M.H., Grimson, W.E.L., Westin, C.F.: A method for clustering white matter fiber tracts. AJNR Am. J. Neuroradiol. 27(5), 1032–1036 (2006)Google Scholar
  15. 15.
    Oishi, K., Zilles, K., Amunts, K., Faria, A., Jiang, H., Li, X., Akhter, K., Hua, K., Woods, R., Toga, A.W., Pike, G.B., Rosa-Neto, P., Evans, A., Zhang, J., Huang, H., Miller, M.I., van Zijl, P.C., Mazziotta, J., Mori, S.: Human brain white matter atlas: Identification and assignment of common anatomical structures in superficial white matter. NeuroImage 43(3), 447–457 (2008)CrossRefGoogle Scholar
  16. 16.
    Scheirer, W.J., de Rezende Rocha, A., Sapkota, A., Boult, T.E.: Toward open set recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1757–1772 (2013)CrossRefGoogle Scholar
  17. 17.
    Siless, V., Chang, K., Fischl, B., Yendiki, A.: AnatomiCuts: hierarchical clustering of tractography streamlines based on anatomical similarity. NeuroImage 166, 32–45 (2018)CrossRefGoogle Scholar
  18. 18.
    Stieltjes, B., Kaufmann, W.E., van Zijl, P.C., Fredericksen, K., Pearlson, G.D., Solaiyappan, M., Mori, S.: Diffusion tensor imaging and axonal tracking in the human brainstem. NeuroImage 14(3), 723–735 (2001)CrossRefGoogle Scholar
  19. 19.
    Ture, U., Yasargil, M.G., Friedman, A.H., Al-Mefty, O.: Fiber dissection technique: lateral aspect of the brain. Neurosurgery 47(2), 417–426 (2000)CrossRefGoogle Scholar
  20. 20.
    Ugurlu, D., Firat, Z., Ture, U., Unal, G.: Neighborhood resolved fiber orientation distributions (NRFOD) in automatic labeling of white matter fiber pathways. Med. Image Anal. (2018)Google Scholar
  21. 21.
    Wassermann, D., Bloy, L., Kanterakis, E., Verma, R., Deriche, R.: Unsupervised white matter fiber clustering and tract probability map generation: applications of a gaussian process framework for white matter fibers. NeuroImage 51(1), 228–241 (2010)CrossRefGoogle Scholar
  22. 22.
    Wassermann, D., Makris, N., Rathi, Y., Shenton, M., Kikinis, R., Kubicki, M., Westin, C.F.: The white matter query language: a novel approach for describing human white matter anatomy. Brain Struct. Funct. 221(9), 4705–4721 (2016)CrossRefGoogle Scholar
  23. 23.
    Wasserthal, J., Neher, P.F., Maier-Hein, K.H.: Tract orientation mapping for bundle-specific tractography. ArXiv e-prints, June 2018Google Scholar
  24. 24.
    Wasserthal, J., Neher, P.F., Maier-Hein, : K.H.: TractSeg - fast and accurate white matter tract segmentation (2018). CoRR abs/1805.07103. arXiv:1805.07103
  25. 25.
    Yeh, F.C., Wedeen, V.J., Tseng, W.Y.I.: Generalized \({ q}\)-sampling imaging. IEEE Trans. Med. Imaging 29(9), 1626–1635 (2010)CrossRefGoogle Scholar
  26. 26.
    Yeh, F.C., Tseng, W.Y.I.: Sparse solution of fiber orientation distribution function by diffusion decomposition. PLOS ONE 8(10), 1–12 (2013)Google Scholar
  27. 27.
    Zhang, Y., Zhang, J., Oishi, K., Faria, A.V., Jiang, H., Li, X., Akhter, K., Rosa-Neto, P., Pike, G.B., Evans, A., Toga, A.W., Woods, R., Mazziotta, J.C., Miller, M.I., van Zijl, P.C., Mori, S.: Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy. NeuroImage 52(4), 1289–1301 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Devran Ugurlu
    • 1
  • Zeynep Firat
    • 2
  • Ugur Ture
    • 2
  • Gozde Unal
    • 3
    Email author
  1. 1.Sabanci UniversityIstanbulTurkey
  2. 2.Yeditepe University HospitalIstanbulTurkey
  3. 3.Sabanci University, Istanbul Technical UniversityIstanbulTurkey

Personalised recommendations