Starch-Based Nanocomposites: Types and Industrial Applications

  • Faruq MohammadEmail author
  • Tanvir Arfin
  • Ibrahim B. Bwatanglang
  • Hamad A. Al-lohedan


The extraordinary physicochemical and functional features offered by the starch material segregated from various sources of plants, such as rice, corn and wheat, are put into use for a large extent of applications. The physicochemical features of starch namely lipids content, a ratio of amylose to amylopectin, the size distribution of granule play a significant role to grasp the concept related to the mechanism on the functionality of starch in various systems. The starch-modified chemistry along with a large number of reactive sites carries the biologically active compounds as biocompatible carriers and are metabolized in the human body quickly and comfortably. The current chapter focusses on the different composites made up of starch along with polymers like polylactic acid, polycaprolactone, polyhydroxy alkaloid where the synthesis, chemistry and application part are greatly discussed. Further, the physicochemical stability of the nanocomposites relating the specific structure is compared in addition to their deployment in various industrial applications.



Drs. FM and HAAL are grateful to the Deanship of Scientific Research, King Saud University for funding through Vice Deanship of Scientific Research Chairs.


  1. Aider M (2010) Chitosan application for active bio-based films production and potential in the food industry. LWT Food Sci Technol 43:837–842CrossRefGoogle Scholar
  2. Arfin T (2015) Chitosan and its derivatives: overlook of commercial application in diverse field. In: Ahmed S, Ikram S (eds) Chitosan: derivatives, composites and applications. Scrivener Publishing LLC, USAGoogle Scholar
  3. Arfin T, Athar S (2018) Graphene for advanced organic photovoltaics. In: Kanchi S, Ahmed S, Sabela MI, Hussian CM (eds) Nanomaterials: biomedical and environmental applications. Scrivener Publishing LLC, USAGoogle Scholar
  4. Arfin T, Mohammad F (2016) Chemistry and structural aspects of chitosan towards biomedical applications. In: Ikram S, Ahmed S (eds) Natural polymers: derivatives, blends and composites. Nova Science Publishers, New YorkGoogle Scholar
  5. Arfin T, Tarannum A (2017) Polymer materials: from the past to the future. In: Ahmed S, Annu S, Ikram S (eds) Green polymeric materials: advanced and sustainable development. Nova Science Publishers, New YorkGoogle Scholar
  6. Arfin T, Mohammad F, Yusof NA (2014) Biomass resources in environmental and socio-economic analysis of fuel-wood consumption. In: Hakeem KR, Jawaid M, Rashid U (eds) Biomass and bioenergy: processing and properties. Springer International Publishing, SwitzerlandGoogle Scholar
  7. Armentano I, Bitinis N, Fortunati E et al (2013) Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci 38:1720–1747CrossRefGoogle Scholar
  8. Avella M, De Vlieger JJ, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93:467–474CrossRefGoogle Scholar
  9. Avérous L, Pollet E (2012) Environmental silicate nano-biocomposites. Springer International Publishing, SwitzerlandGoogle Scholar
  10. Ayana B, Suin S, Khatua BB (2014) Highly exfoliated eco-friendly thermoplastic starch (TPS)/poly(lactic acid) (PLA)/clay nanocomposites using unmodified nanoclay. Carbohydr Polym 110:430–439CrossRefGoogle Scholar
  11. Azimi B, Nourpanah P, Rabiee M, Arbab S (2014) Poly(ε-caprolactone) fiber: an overview. J Eng Fibers Fabr 9:74–90Google Scholar
  12. Babaei A, Babazadeh M (2011) Multi-walled carbon nanotubes/chitosan polymer composite modified glassy carbon electrode for sensitive simultaneous determination of levodopa and morphine. Anal Methods 3:2400–2405CrossRefGoogle Scholar
  13. Bansal M, Chauhan GS, Kaushik A, Sharma A (2016) Extraction and functionalization of bagasse cellulose nanofibres to Schiff-base based antimicrobial membranes. Int J Biol Macromol 91:887–894CrossRefGoogle Scholar
  14. Barrera E, Gil J, Restrepo A, Mosquera K, Durango D (2015) A coating of chitosan and propolis extract for the postharvest treatment of papaya (Carica papaya L. cv. Hawaiiana). Rev Fac Nac Agron Medellín 68:7667–7678CrossRefGoogle Scholar
  15. Barzegar H, Azizi MH, Barzegar M, Hamidi-Esfahani Z (2014) Effect of potassium sorbate on antimicrobial and physical properties of starch–clay nanocomposite films. Carbohydr Polym 110:26–31CrossRefGoogle Scholar
  16. Bie P, Liu P, Yu L, Li X, Chen L, Xie F (2013) The properties of antimicrobial films derived from poly(lactic acid)/starch/chitosan blended matrix. Carbohydr Polym 98:959–966CrossRefGoogle Scholar
  17. Bordes P, Pollet E, Bourbigot S, Avérous L (2008) Structure and properties of PHA/clay nano-biocomposites prepared by melt intercalation. Macromol Chem Phys 209:1473–1484CrossRefGoogle Scholar
  18. Botana A, Mollo M, Eisenberg P, Torres Sanchez RM (2010) Effect of modified montmorillonite on biodegradable PHB nanocomposites. Appl Clay Sci 47:263–270CrossRefGoogle Scholar
  19. Bouyer E, Mekhloufi G, Rosilio V, Grossiord JL, Agnely F (2012) Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: alternatives to synthetic surfactants in the pharmaceutical field? Int J Pharm 436:359–378CrossRefGoogle Scholar
  20. Bruzaud S, Bourmaud A (2007) Thermal degradation and (nano) mechanical behavior of layered silicate reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. Polym Test 26:652–659CrossRefGoogle Scholar
  21. Burdock GA (1998) Review of the biological properties and toxicity of bee propolis (propolis). Food Chem Toxicol 36:347–363CrossRefGoogle Scholar
  22. Chang PR, Ai F, Chen Y, Dufresne A, Huang J (2009) Effects of starch nanaocrystals-graftpolycaprolactone on mechanical properties of waterbone polyurethane-based nanocomposites. J Appl Polym Sci 111:619–627CrossRefGoogle Scholar
  23. Chang PR, Jian R, Yu J, Ma X (2010a) Starch-based composites reinforced with novel chitin nanoparticles. Carbohydr Polym 80:420–425CrossRefGoogle Scholar
  24. Chang PR, Jian R, Yu J, Ma X (2010b) Fabrication and characterisation of chitosan nanoparticles/plasticised-starch composites. Food Chem 120:736–740CrossRefGoogle Scholar
  25. Chen GG, Qi XM, Guan Y, Peng F, Yao CL, Sun RC (2016) High strength hemicellulose-based nanocomposite film for food packaging applications. ACS Sustain Chem Eng 4:1985–1993CrossRefGoogle Scholar
  26. Chiou BS, Wood D, Yee E, Imam SH, Glenn GM, Orts WJ (2007) Extruded starch-nanoclay nancomposites: effects of glycerol and nanoclay concentration. Polym Eng Sci 47:1898–1904CrossRefGoogle Scholar
  27. Choi JS, Park WH (2004) Effect of biodegradable plasticizers on thermal and mechanical properties of poly(3-hydroxybutyrate). Polym Test 23:455–460CrossRefGoogle Scholar
  28. Choi Y, Simonsen J (2006) Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. J Nanosci Nanotechnol 6:633–639CrossRefGoogle Scholar
  29. Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ (2008) The influence of electrospun aligned poly (epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials 29:2899–2906CrossRefGoogle Scholar
  30. Chung YL, Ansari S, Estevez L et al (2010) Preparation and properties of biodegradable starch–clay nanocomposites. Carbohydr Polym 79:391–396CrossRefGoogle Scholar
  31. Cui Y, Kumar S, Kona BR, van Houcke D (2015) Gas barrier properties of polymer/clay nanocomposites. RSC Adv 5:63669–63690CrossRefGoogle Scholar
  32. D’Amico DA, Manfredi LB, Cyras VP (2012) Relationship between thermal properties, morphology, and crystallinity of nanocomposites based on polyhydroxybutyrate. J Appl Polym Sci 123:200–208CrossRefGoogle Scholar
  33. Da Silva MA, Iamanaka B, Taniwaki MH, Kieckbusch TG (2013) Evaluation of the antimicrobial potential of alginate and alginate/chitosan films containing potassium sorbate and natamycin. Packag Technol Sci 26:479–492CrossRefGoogle Scholar
  34. DeKesel C, Wauven CV, David C (1997) Biodegradation of polycaprolactone and its blends with poly(vinylalcohol) by microorganisms from a compost of house-hold refuse. Polym Degrad Stab 55:107–113CrossRefGoogle Scholar
  35. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011:290602 (19 pp)CrossRefGoogle Scholar
  36. El-Hadi A, Schnabel R, Straube E, Müller G, Henning S (2002) Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly(3-hydroxyalkanoate) PHAs and their blends. Polym Test 21:665–674CrossRefGoogle Scholar
  37. Fabunmi OO, Lope G. Tabil LG, Panigrahi S, Chang PR (2007) Developing biodegradable plastics from starch. ASABE section meeting paper no. RRV-07130. St. Joseph, MichGoogle Scholar
  38. Famá LM, Gañan P, Bernal CR, Goyanes S (2012) Biodegradable starch nanocomposites with low water vapour permeability and high storage modulus. Carbohydr Polym 87:1989–1993CrossRefGoogle Scholar
  39. Ferreira BMP, Zavaglia CAC, Duek EAR (2002) Films of PLLA/PHBV: thermal, morphological, and mechanical characterization. J Appl Polym Sci 86:2898–2906CrossRefGoogle Scholar
  40. Gain O, Espuche E, Pollet E, Alexandre M, Dubois P (2005) Gas barrier properties of poly(ε-caprolactone)/clay nanocomposites: influence of the morphology and polymer/clay interactions. J Polym Sci Polym Phys 43:205–214CrossRefGoogle Scholar
  41. Gao W, Dong H, Hou H, Zhang H (2012) Effects of clays with various hydrophilicities on properties of starch–clay nanocomposites by film blowing. Carbohydr Polym 88:321–328CrossRefGoogle Scholar
  42. Garcia MDS, Lagaron JM (2010) Novel clay-based nanobiocomposites of biopolyesters with synergistic barrier to UV light, gas, and vapour. J Appl Polym Sci 118:188–199CrossRefGoogle Scholar
  43. Garza MZT, Garcia S, Gonzalez MDSF, Nino KAL (2015) Edible active coatings based on pectin, pullulan, and chitosan increase quality and shelf life of strawberries (Fragaria ananassa). J Food Sci 80:M1823–M1830Google Scholar
  44. George J, Siddaramaiah (2012) High performance edible nanocomposite films containing bacterial cellulose nanocrystals. Carbohydr Polym 87:2031–2037. Scholar
  45. Ghanbarzadeh B, Almasi H, Entezami A (2011) Improving the barrier and mechanical properties of corn starch-based edible films: effect of citric acid and carboxymethyl cellulose. Ind Crop Prod 33:229–235CrossRefGoogle Scholar
  46. Giannakas A, Vlacha M, Salmas C et al (2016) Preparation, characterization, mechanical, barrier and antimicrobial properties of chitosan/PVOH/clay nanocomposites. Carbohydr Polym 140:408–415CrossRefGoogle Scholar
  47. Gol NB, Patel PR, Rao TVR (2013) Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biol Technol 85:185–195CrossRefGoogle Scholar
  48. Guillen MCG, Gimenez B, López-Caballero ME, Montero MP (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll 25:1813–1827CrossRefGoogle Scholar
  49. Gupta D, Venugopal J, Prabhakaran MP et al (2009) Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomater 5:2560–2569CrossRefGoogle Scholar
  50. Gutiérrez TJ, Pérez E, Guzmán R, Tapia MS, Famá L (2014) Physicochemical and functional properties of native and modified by crosslinking, dark cush-cush yam (Dioscorea trifida) and cassava (Manihot esculenta) starch. J Polym Biopolym Phys Chem 2:1–5Google Scholar
  51. Hashemi JM (2016) Biological effect of bee propolis: a review. Eur J Appl Sci 8:311–318Google Scholar
  52. Hassani FS, Nafchi AM (2014) Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay. Int J Biol Macromol 67:446–458CrossRefGoogle Scholar
  53. Higueras L, Carballo GL, Munoz PH, Catala R, Gavara R (2014) Antimicrobial packaging of chicken fillets based on the release of carvacrol from chitosan/cyclodextrin films. Int J Food Microbiol 188:53–59CrossRefGoogle Scholar
  54. Homminga D, Goderis B, Hoffman S, Reynaers H, Groeninckx G (2005) Influence of shear flow on the preparation of polymer layered silicate nanocomposites. Polymers 46:9941–9954CrossRefGoogle Scholar
  55. Hosseini SF, Rezaei M, Zandi M, Farahmandghavi F (2016) Development of bioactive fish gelatin/chitosan nanoparticles composite films with antimicrobial properties. Food Chem 194:1266–1274CrossRefGoogle Scholar
  56. Hu SG, Jou CH, Yang MC (2004) Biocompatibility and antibacterial activity of chitosan and collagen immobilized poly(3-hydroxybutyric acid–co–3-hydroxyvaleric acid). Carbohydr Polym 58:173–179CrossRefGoogle Scholar
  57. Huang M, Yu J, Ma X (2006) High mechanical performance MMT-urea and formamide-plasticized thermoplastic cornstarch biodegradable nanocomposites. Carbohydr Polym 63:393–399CrossRefGoogle Scholar
  58. Huang S, Zhang CP, Wang K, GLi GQ, Hu FU (2014). Recent ddvances in the chemical composition of propolis. Molecules 19:19610–19632CrossRefGoogle Scholar
  59. Ikeo Y, Aoki K, Kishi H et al (2006) Nano clay reinforced biodegradable plastics of PCL starch blends. Polym Adv Technol 17:940–944CrossRefGoogle Scholar
  60. Iman M, Maji TK (2012) Effect of crosslinker and nanoclay on starch and jute fabric based green nanocomposites. Carbohydr Polym 89:290–297CrossRefGoogle Scholar
  61. Jafari J, Emami SH, Samadikuchaksaraei A, Bahar MA, Gorjipour F (2011) Electrospun chitosangelatin nanofiberous scaffold: fabrication and in vitro evaluation. Biomed Mater Eng 21:99–112Google Scholar
  62. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Polylactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9:552–571CrossRefGoogle Scholar
  63. Jantanasakulwong K, Leksawasdi N, Seesuriyachan P et al (2016) Reactive blending of thermoplastic starch, epoxidized natural rubber and chitosan. Eur Polym J 84:292–299CrossRefGoogle Scholar
  64. Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150CrossRefGoogle Scholar
  65. Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56:403–432CrossRefGoogle Scholar
  66. Khan RA, Salmieri S, Dussault D et al (2010) Production and properties of nanocellulose-reinforced methylcellulose based biodegradable films. J Agri Food Chem 58:7878–7885CrossRefGoogle Scholar
  67. Khan A, Khan RA, Salmieri S et al (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90:1601–1608CrossRefGoogle Scholar
  68. Khwaldia K, Basta AH, Aloui H, El-Saied H (2014) Chitosancaseinate bilayer coatings for paper packaging materials. Carbohydr Polym 99:508–516CrossRefGoogle Scholar
  69. Kosaraju SL, Weerakkody R, Augustin MA (2010) Chitosanglucose conjugates: influence of extent of Maillard reaction on antioxidant properties. J Agric Food Chem 58:12449–12455CrossRefGoogle Scholar
  70. Kowalczyk D, Wiater MK, Nowak J, Baraniak B (2015) Characterization of films based on chitosan lactate and its blends with oxidized starch and gelatin. Int J Biol Macromol 77:350–359CrossRefGoogle Scholar
  71. Lee EJ, Khan SA, Park JK, Lim KH (2012) Studies on the characteristics of drug-loaded gelatin nanoparticles prepared by nanoprecipitation. Bioprocess Biosyst Eng 35:297–307CrossRefGoogle Scholar
  72. Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromol 6:1–8CrossRefGoogle Scholar
  73. Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI (2006) Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27:2705–2715CrossRefGoogle Scholar
  74. Li Q, Zhou J, Zhang L (2009) Structure and properties of the nanocomposite films of chitosan reinforced with cellulose whiskers. J Polym Sci 47:1069–1077CrossRefGoogle Scholar
  75. Li C, Fu X, Luo F, Huang Q (2013a) Effects of maltose on stability and rheological properties of orange oil-in-water emulsion formed by OSA modified starch. Food Hydrocoll 32:79–86CrossRefGoogle Scholar
  76. Li F, Biagioni P, Finazzi M, Tavazzi S, Piergiovanni L (2013b) Tunable green oxygen barrier through layer-by-layer self-assembly of chitosan and cellulose nanocrystals. Carbohydr Polym 92:2128–2134CrossRefGoogle Scholar
  77. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852CrossRefGoogle Scholar
  78. Liu K, Lin X, Chen L, Huang L, Cao S, Wang H (2013) Preparation of microfibrillated cellulose/chitosan-benzalkonium chloride biocomposite for enhancing antibacterium and strength of sodium alginate films. J Agric Food Chem 61:6562–6567CrossRefGoogle Scholar
  79. Lo HY, Kuo HT, Huang YY (2010) Application of polycaprolactone as an anti-adhesion biomaterial film. Artif Organs 34:648–653Google Scholar
  80. Lopez O, Garcia MA, Villar MA, Gentili A, Rodriguez MS, Albertengo L (2014) Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT Food Sci Technol 57:106–115CrossRefGoogle Scholar
  81. Lörcks J (1998) Properties and applications of compostable starch-based plastic material. Polym Degrad Stability 59:245–249CrossRefGoogle Scholar
  82. Ludueña LNN, Kenny JMM, Vázquez A, Alvarez VA (2011) Effect of clay organic modifier on the final performance of PCL/clay nanocomposites. Mater Sci Eng A 529:215–223CrossRefGoogle Scholar
  83. Matsuda DKM, Verceheze AES, Carvalho GM, Yamashita F, Mali S (2013) Baked foams of cassava starch and organically modified nanoclays. Ind Crops Prod 44:705–711CrossRefGoogle Scholar
  84. McDonnell MT, Greeley DA, Kit KM, Keffer DJ (2016) Molecular dynamics simulations of hydration effects on solvation, diffusivity, and permeability in chitosan/chitin films. J Phys Chem B 120:8997–9010CrossRefGoogle Scholar
  85. Mischnick P, Momcilovic D (2010) Chemical structure analysis of starch and cellulose derivatives. Adv Carbohydr Chem Biochem 64:117–210CrossRefGoogle Scholar
  86. Mizuno M (1989) Food packaging materials containing propolis as a preservative. Japanese patent no. JP Ol, 243(974), 89Google Scholar
  87. Mograkar PR, Arfin T (2017) Chemical and structural importance of starch based derivatives and its applications. In: Ikram S, Ahmed S (eds) Natural polymers: derivatives, blends and composite. Nova Science Publishers, New YorkGoogle Scholar
  88. Mohammad F, Arfin T, Yusof NA (2015) Chemical processes and reaction by-products involved in the biorefinery concept of biofuel production. In: Hakeem KR, Jawaid M, Alothman OY (eds) Agricultural biomass based potential materials. Springer International Publishing, SwitzerlandGoogle Scholar
  89. Molyneux RJ (1993) Isolation, characterization and analysis of polyhydroxy alkaloids. Phytochem Anal 4:193–204CrossRefGoogle Scholar
  90. Mondragón M, Mancilla JE, Rodríguez-González FJ (2008) Nanocomposites from plasticized high-amylopectin, normal and high-amylose maize starches. Polym Eng Sci 48:1261–1267CrossRefGoogle Scholar
  91. Muller J, González-Martínez C, Chiralt A (2017) Combination of poly(lactic) acid and starch for biodegradable food packaging. Materials 10:952 (22 pp)CrossRefGoogle Scholar
  92. Nasseri R, Mohammadi N (2014) Starch-based nanocomposites: a comparative performance study of cellulose whiskers and starch nanoparticles. Carbohydr Polym 106:432–439CrossRefGoogle Scholar
  93. Nitayaphat W, Jintakosol T (2014) Removal of silver(I) from aqueous solutions by chitosan/carbon nanotube nanocomposite beads. Adv Mater Res 893:166–169CrossRefGoogle Scholar
  94. Noshirvani N, Ghanbarzadeh B, Mokarram RR, Hashemi M (2017) Novel active packaging based on carboxymethyl cellulose-chitosan-ZnO NPs nanocomposite for increasing the shelf life of bread. Food Pack Shelf Life 11:106–114CrossRefGoogle Scholar
  95. Olsson E, Hedenqvist M, Johansson C, Järnström L (2013) Influence of citric acid and curing on moisture sorption, diffusion and permeability of starch films. Carbohydr Polym 94:765–772CrossRefGoogle Scholar
  96. Pal AK, Katiyar V (2016) Nanoamphiphilic chitosan dispersed poly(lactic acid) bionanocomposite films with improved thermal, mechanical, and gas barrier properties. Biomacromol 17:2603–2618CrossRefGoogle Scholar
  97. Pandey JK, Sing RP (2005) Green nanocomposites from renewable resources: effect of plasticizer on the structure and material properties of clay-filled starch. Starch 57:8–15CrossRefGoogle Scholar
  98. Pantoustier N, Lepoittevin B, Alexandre M et al (2002) Biodegradable polyester layered silicate nanocomposites based on poly(ε-caprolactone). Polym Eng Sci 42:1928–1937CrossRefGoogle Scholar
  99. Park H, Li X, Jin C, Park C, Cho W, Ha C (2002) Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromol Mater Eng 287:553–558CrossRefGoogle Scholar
  100. Park H, Lee W, Park C, Cho W, Ha C (2003) Enviromentally friendly polymer hybrids. Part 1 mechanical, thermal and barrier properties of thermoplastic starch/clay nanocomposites. J Mater Sci 38:909–915CrossRefGoogle Scholar
  101. Pérez CJ, Alvarez VA, Mondragón I, Vázquez A (2007) Mechanical properties of layered silicate/starch polycaprolactone blend nanocomposites. Polym Int 56:686–693CrossRefGoogle Scholar
  102. Pérez CJ, Alvarez VA, Vázquez A (2008) Creep behaviour of layered silicate/starch–polycaprolactone blends nanocomposites. Mater Sci Eng A 480:259–265CrossRefGoogle Scholar
  103. Pietta PG, Gardana C, Pietta AM (2002) Analytical methods for quality control of propolis. Fitoterapia 73:S7–S20CrossRefGoogle Scholar
  104. Popuri SR, Frederick R, Chang CY, Fang SS, Wang CC, Lee LC (2014) Removal of copper(II) ions from aqueous solutions onto chitosan/carbon nanotubes composite sorbent. Desalin Water Treat 52:691–701CrossRefGoogle Scholar
  105. Poverenov E, Danino S, Horev B, Granit R, Vinokur Y, Rodov V (2014) Layer-by-layer electrostatic deposition of edible coating on fresh cut melon model: Anticipated and unexpected effects of alginate-chitosan combination. Food Bioprocess Technol 7:1424–1432CrossRefGoogle Scholar
  106. Pradhan GC, Dash S, Swain SK (2015) Barrier properties of nano silicon carbide designed chitosan nanocomposites. Carbohydr Polym 134:60–65CrossRefGoogle Scholar
  107. Qian YF, Zhang KH, Chen F, Ke QF, Mo XM (2011) Cross-linking of gelatin and chitosan complex nanofibers for tissue-engineering scaffolds. J Biomater Sci Polym Ed 22:1099–1113CrossRefGoogle Scholar
  108. Qu P, Gao YA, Wu GF, Zhang LP (2010) Nanocomposites of poly(lactic acid) reinforced with cellulose nanofibrils. BioResources 5:1811–1823Google Scholar
  109. Reis KC, Pereira J, Smith AC et al (2008) Characterization of polyhydroxybutyrate-hydroxyvalerate (PHB-HV)/maize starch blend films. J Food Eng 89:361–369CrossRefGoogle Scholar
  110. Rui L, Xie M, Hu B, Zhou L, Yin D, Zeng X (2017) A comparative study on chitosan/gelatin composite films with conjugated or incorporated gallic acid. Carbohydr Polym 173:473–481CrossRefGoogle Scholar
  111. Rydz J, Sikorska W, Kyulavska M, Christova D (2015) Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development. Int J Mol Sci 16:564–596CrossRefGoogle Scholar
  112. Sahithi K, Swetha M, Ramasamy K, Srinivasan N, Selvamurugan N (2010) Polymeric composites containing carbon nanotubes for bone tissue engineering. Int J Biol Macromol 46:281–283CrossRefGoogle Scholar
  113. Sáinz CB, Bustillos RJA, Wood DF, Williams TG, McHugh TH (2010) Composite edible films based on hydroxypropyl methylcellulose reinforced with microcrystalline cellulose nanoparticles. J Agric Food Chem 58:3753–3760CrossRefGoogle Scholar
  114. Sáinz CB, Bras J, Williams T et al (2011) HPMC reinforced with different cellulose nano-particles. Carbohydr Polym 86:1549–1557CrossRefGoogle Scholar
  115. Saiz PF, Sánchez G, Soler C, Lagaron JM, Ocio MJ (2013) Chitosan films for the microbiological preservation of refrigerated sole and hake fillets. Food Control 34:61–68CrossRefGoogle Scholar
  116. Salehi E, Madaeni SS, Rajabi L et al (2012) Novel chitosan/poly(vinyl) alcohol thin adsorptive membranes modified with amino functionalized multi-walled carbon nanotubes for Cu(II) removal from water: preparation, characterization, adsorption kinetics and thermodynamics. Sep Purif Technol 89:309–319CrossRefGoogle Scholar
  117. Sarazin P, Li G, Orts WJ, Favis BD (2008) Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer 49:599–609CrossRefGoogle Scholar
  118. Schlemmer D, Angélica RS, Sales MJA (2010) Morphological and thermomechanical characterization of thermoplastic starch/montmorillonite nanocomposites. Comp Struct 92:2066–2070CrossRefGoogle Scholar
  119. Shan GF, Gong X, Chen WP, Chen L, Zhu MF (2011) Effect of multi-walled carbon nanotubes on crystallization behavior of poly(3-hydroxybutyrate–co–3-hydroxyvalerate). Colloid Polym Sci 289:1005–1014CrossRefGoogle Scholar
  120. Shang L, Fei Q, Zhang YH, Wang XZ, Fan DD, Chang HN (2011) Thermal properties and biodegradability studies of poly(3-hydroxybutyrate–co–3-hydroxyvalerate). J Polym Environ 20:23–28CrossRefGoogle Scholar
  121. Shawky HA, El-Aassar AHM, Abo-Zeid DE (2012) Chitosan/carbon nanotube composite beads:preparation, characterization, and cost evaluation for mercury removal from wastewater of some industrial cities in Egypt. J Appl Polym Sci 125:E93–E101CrossRefGoogle Scholar
  122. Sheth M, Kumar RA, Davé V, Gross RA, McCarthy SP (1997) Biodegradable polymer blends of poly(lactic acid) and poly(ethylene glycol). J Appl Polym Sci 66:1495–1505CrossRefGoogle Scholar
  123. Shi S, Wang W, Liu L, Wu S, Wei Y, Li W (2013) Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature. J Food Eng 118:125–131CrossRefGoogle Scholar
  124. Siracusa V, Rocculi P, Romani S, Rosa MD (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643CrossRefGoogle Scholar
  125. Siripatrawan U, Vitchayakitti W (2016) Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocoll 61:695–702CrossRefGoogle Scholar
  126. Sohier J, Carubelli I, Sarathchandra P, Latif N, Chester AH, Yacoub MH (2014) The potential of anisotropic matrices as substrate for heart valve engineering. Biomaterials 35:1833–1844CrossRefGoogle Scholar
  127. Song Z, Li F, Guan H, Xu Y, Fu Q, Li D (2017) Combination of nisin and ε-polylysine with chitosan coating inhibits the white blush of fresh-cut carrots. Food Control 74:34–44CrossRefGoogle Scholar
  128. Sun X, Sui S, Ference C, Zhang Y, Sun S, Zhou N, Zhu W, Zhou K (2014) Antimicrobial and mechanical properties of betacyclodextrin inclusion with essential oils in chitosan films. J Agric Food Chem 62:8914–8918CrossRefGoogle Scholar
  129. Sundaram J, Pant J, Goudie MJ, Mani S, Handa H (2016) Antimicrobial and physicochemical characterization of biodegradable, nitric oxide-releasing nanocellulose-chitosan packaging membranes. J Agric Food Chem 64:5260–5266CrossRefGoogle Scholar
  130. Takegawa A, Murakami M, Kaneko Y, Kadokawa J (2010) Preparation of chitin/cellulose composite gels and films with ionic liquids. Carbohydr Polym 79:85–90CrossRefGoogle Scholar
  131. Taravel MN, Domard A (1993) Relation between the physicochemical characteristics of collagen and its interactions with chitosan: I. Biomaterials 14:930–938CrossRefGoogle Scholar
  132. Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117CrossRefGoogle Scholar
  133. Thakur VK, Singha AS, Kaur I et al (2010) Silane functionalization of saccharum cilliare fibers: thermal, morphological, and physicochemical study. Int J Polym Anal Charact 15:397–414CrossRefGoogle Scholar
  134. Thakur VK, Yan J, Lin MF et al (2012) Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym Chem 3:962–969CrossRefGoogle Scholar
  135. Thakur VK, Thakur MK, Gupta RK (2014) Review: raw natural fiber–based polymer composites. Int J Polym Anal Charact 19:256–271CrossRefGoogle Scholar
  136. Tosi EA, Re E, Ortega ME, Cazzoli AF (2007) Food preservative based on propolis: bacteriostatic activity of propolis polyphenols and flavonoids upon Escherichia coli. Food Chem 104:1025–1029CrossRefGoogle Scholar
  137. Uddin AJ, Fujie M, Sembo S, Gotoh Y (2012) Outstanding reinforcing effect of highly oriented chitin whiskers in PVA nanocomposites. Carbohydr Polym 87:799–805CrossRefGoogle Scholar
  138. Velickova E, Winkelhausen E, Kuzmanova S, Alves VD, Martins MM (2013) Impact of chitosan-beeswax edible coatings on ̃the quality of fresh strawberries (Fragaria ananassa cv Camarosa) under commercial storage conditions. LWT Food Sci Technol 52:80–92CrossRefGoogle Scholar
  139. Vimaladevi S, Panda SK, Xavier KA, Bindu J (2015) Packaging performance of organic acid incorporated chitosan films on dried anchovy (Stolephorus indicus). Carbohydr Polym 127:189–194CrossRefGoogle Scholar
  140. Wagh VD (2013) Propolis: a wonder bees product and its pharmacological potentials. Adv Pharm Sci 308249 (11 pp)Google Scholar
  141. Wan YZ, Luo H, He F, Liang H, Huang Y, Li XL (2009) Mechanical, moisture absorption, and biodegradation behaviours of bacterial cellulose fibre-reinforced starch biocomposites. Comp Sci Technol 69:1212–1217CrossRefGoogle Scholar
  142. Wang H, Qian J, Ding F (2018) Emerging chitosan-based films for food packaging applications. J Agric Food Chem 66:395–413CrossRefGoogle Scholar
  143. Wilhelm HM, Sierakowski MR, Souza GP, Wypych F (2003) Starch films reinforced with mineral clay. Carbohydr Polym 52:101–110CrossRefGoogle Scholar
  144. Woranucha S, Yoksana R (2013) Eugenol-loaded chitosan nanoparticles: II. Application in biobased plastics for active packaging. Carbohydr Polym 96:586–592CrossRefGoogle Scholar
  145. Wu T, Yan J (2013) Porous CNTs/chitosan composite with lamellar structure prepared by icetemplating. In: Proceedings of SPIE-the international society for optical engineering, 8923, art no 89233AGoogle Scholar
  146. Wu J, Lin J, Zhou M, Wei C (2000) Synthesis and properties of starch-graftpolyacrylamide/clay superabsorbent composite. Macromol Rapid Commun 21:1032–1034CrossRefGoogle Scholar
  147. Xiao W, Xu J, Liu X, Hu Q, Huang J (2013) Antibacterial hybrid materials fabricated by nanocoating of microfibril bundles of cellulose substance with titania/chitosan/silver-nanoparticle composite films. J Mater Chem B 1:3477–3485CrossRefGoogle Scholar
  148. Xie Q, Hu X, Hu T, Xiao P, Xu Y, Leffew KW (2015) Polytrimethylene terephthalate: an example of an industrial polymer platform development in China. Macromol React Eng 9:401–408CrossRefGoogle Scholar
  149. Yu JG, Zhao XH, Yang H et al (2014) Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci Total Environ 482–483:241–251CrossRefGoogle Scholar
  150. Yuceer M, Caner C (2014) Antimicrobial lysozyme-chitosan coatings affect functional properties and shelf life of chicken eggs during storage. J Sci Food Agric 94:153–162CrossRefGoogle Scholar
  151. Zabihzadeh SM (2010) Water uptake and flexural properties of natural filler/hdpe composites. BioResources 5:316–323Google Scholar
  152. Zhang Y, Zhang M, Yang H (2015) Postharvest chitosan-g-salicylic acid application alleviates chilling injury and preserves cucumber fruit quality during cold storage. Food Chem 174:558–563CrossRefGoogle Scholar
  153. Zhou Q, Malm E, Nilsson H et al (2009) Nanostructured biocomposites based on bacterial cellulosic nanofibers compartmentalized by a soft hydroxyethylcellulose matrix coating. Soft Matter 5:4124–4130CrossRefGoogle Scholar
  154. Zhuang X, Cheng B, Kang W, Xu X (2010) Electrospun chitosan/gelatin nanofibers containing silver nanoparticles. Carbohydr Polym 82:524–527CrossRefGoogle Scholar
  155. Zuraida A, Yusliza Y, Anuar H, Mohd Khairul Muhaimin R (2012) The effect of water and citric acid on sago starch bio-plastics. Int Food Res J 19:715–719Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Faruq Mohammad
    • 1
    Email author
  • Tanvir Arfin
    • 2
  • Ibrahim B. Bwatanglang
    • 3
  • Hamad A. Al-lohedan
    • 1
  1. 1.Surfactant Research Chair, Department of Chemistry, College of ScienceKing Saud UniversityRiyadhKingdom of Saudi Arabia
  2. 2.Environmental Materials DivisionCSIR-National Environmental and Engineering Research Institute (NEERI)NagpurIndia
  3. 3.Department of Pure and Applied Chemistry, Faculty of ScienceAdamawa State UniversityMubiNigeria

Personalised recommendations