Advertisement

Nanotube/Biopolymer Nanocomposites

  • Nilesh Kumar Shrivastava
  • Muhammad Akmal Ahmad Saidi
  • M. S. Z. Mat Desa
  • Mohamad Zurina
  • Norhayani Othman
  • Azman HassanEmail author
  • A. K. M. Moshiul Alam
  • M. D. H. Beg
  • R. M. Yunus
Chapter

Abstract

Nanotubes are one of the most important classes of 1D nanomaterial which can be used as reinforcing filler for the polymers and biopolymers. Out of several organic/inorganic nanotubes, carbon nanotubes (CNTs) and halloysite nanotubes (HNTs) were most studied due to their high aspect ratio, outstanding mechanical and thermal properties. Nanotubes have potential to increase the physical properties of the biopolymer even at very low loading. The properties of nanotube-filled nanocomposite depend on various parameters like the aspect ratio, dispersion, and interaction between filler and polymer. To improve the utilization and maximum potential of these fillers, it is important to understand the mechanisms of reinforcement. It will help the future researchers to find out the limitations and issues with existent processing method of nanotube-based nanocomposite which is required for further improvement. In this regard, this chapter will help the researchers to fully understand the current progress in processing method, issues, and possible methods to prepare an ideal nanotube and biopolymer-based nanocomposites. This chapter will discuss only biopolymer-based nanocomposites filled by the two most important 1D tubular nanofillers, which are CNT and HNT. This study has been divided into three subtopics, namely (i) thermoplastic nanocomposites, (ii) thermoset nanocomposites, and (iii) natural rubber (NR) nanocomposites. It focuses on the fabrication processes, properties, and potential applications of CNT and HNT biopolymer nanocomposites.

Keywords

CNT HNT Nanotube Biopolymer Nanocomposites 

References

  1. Alam A, Shubhra QT, Al-Imran G et al (2011) Preparation and characterization of natural silk fiber-reinforced polypropylene and synthetic E-glass fiber-reinforced polypropylene composites: a comparative study. J Compos Mater 45(22):2301–2308CrossRefGoogle Scholar
  2. Alam AM, Beg M, Yunus R et al (2016) Evolution of functionalized multi-walled carbon nanotubes by dendritic polymer coating and their anti-scavenging behavior during curing process. Mater Lett 167:58–60CrossRefGoogle Scholar
  3. Alam A, Beg M, Yunus R (2017) Microstructure and fractography of multiwalled carbon nanotube reinforced unsaturated polyester nanocomposites. Polym Compos 38(S1):E462–E471CrossRefGoogle Scholar
  4. Albdiry M, Yousif B (2014) Role of silanized halloysite nanotubes on structural, mechanical properties and fracture toughness of thermoset nanocomposites. Mater Des 57:279–288CrossRefGoogle Scholar
  5. Alhuthali A, Low IM (2013a) Mechanical and fracture properties of halloysite nanotube reinforced vinyl-ester nanocomposites. J Appl Polym Sci 130(3):1716–1725CrossRefGoogle Scholar
  6. Alhuthali A, Low IM (2013b) Water absorption, mechanical, and thermal properties of halloysite nanotube reinforced vinyl-ester nanocomposites. J Mater Sci 48(12):4260–4273CrossRefGoogle Scholar
  7. Anand KA, Jose TS, Alex R et al (2009) Natural rubber-carbon nanotube composites through latex compounding. Int J Polym Mater 59(1):33–44CrossRefGoogle Scholar
  8. Ausman KD, Piner R, Lourie O et al (2000) Organic solvent dispersions of single-walled carbon nanotubes: toward solutions of pristine nanotubes. J Phys Chem B 104(38):8911–8915CrossRefGoogle Scholar
  9. Banerjee S, Mohapatra SK, Das PP et al (2008) Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chem Mater 20(21):6784–6791CrossRefGoogle Scholar
  10. Baochun G, Yanda L, Quanliang Z et al (2009) Structure and properties of natural rubber/halloysite nanotubes composites prepared by latex-suspension coagulation. Chin Synth Rubber Ind 32(2):131–134Google Scholar
  11. Bartolucci SF, Supan KE, Wiggins JS et al (2013) Thermal stability of polypropylene-clay nanocomposites subjected to laser pulse heating. Polym Degrad Stab 98(12):2497–2502CrossRefGoogle Scholar
  12. Baskaran D, Mays JW, Bratcher MS (2004) Polymer-grafted multiwalled carbon nanotubes through surface-initiated polymerization. Angew Chem Int Ed 43(16):2138–2142CrossRefGoogle Scholar
  13. Beg M, Alam AM, Yunus R et al (2015) Improvement of interaction between pre-dispersed multi-walled carbon nanotubes and unsaturated polyester resin. J Nanopart Res 17(1):53CrossRefGoogle Scholar
  14. Berahman R, Raiati M, Mazidi MM et al (2016) Preparation and characterization of vulcanized silicone rubber/halloysite nanotube nanocomposites: effect of matrix hardness and HNT content. Mater Des 104:333–345CrossRefGoogle Scholar
  15. Bethune D, Kiang CH, De Vries M et al (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430):605CrossRefGoogle Scholar
  16. Bokobza L (2007) Multiwall carbon nanotube elastomeric composites: a review. Polymer 48(17):4907–4920CrossRefGoogle Scholar
  17. Bourbigot S, Fontaine G, Gallos A et al (2011) Reactive extrusion of PLA and of PLA/carbon nanotubes nanocomposite: processing, characterization and flame retardancy. Polym Adv Technol 22(1):30–37CrossRefGoogle Scholar
  18. Breton Y, Desarmot G, Salvetat J et al (2004) Mechanical properties of multiwall carbon nanotubes/epoxy composites: influence of network morphology. Carbon 42(5–6):1027–1030CrossRefGoogle Scholar
  19. Britz DA, Khlobystov AN (2006) Noncovalent interactions of molecules with single walled carbon nanotubes. Chem Soc Rev 35(7):637–659CrossRefGoogle Scholar
  20. Cadek M, Murphy R, McCarthy B et al (2002) Optimisation of the arc-discharge production of multi-walled carbon nanotubes. Carbon 40(6):923–928CrossRefGoogle Scholar
  21. Chen RJ, Zhang Y, Wang D et al (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc 123(16):3838–3839CrossRefGoogle Scholar
  22. Chen X, Zhang Z, Qiu Z et al (2007) Hydrothermal fabrication and characterization of polycrystalline linneite (Co3S4) nanotubes based on the Kirkendall effect. J Colloid Interface Sci 308(1):271–275CrossRefGoogle Scholar
  23. Coleman JN, Khan U, Blau WJ et al (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44(9):1624–1652CrossRefGoogle Scholar
  24. Desa M, Zaidi MS, Hassan A et al (2016) Influence of rubber content on mechanical, thermal, and morphological behavior of natural rubber toughened poly(lactic acid)-multiwalled carbon nanotube nanocomposites. J Appl Polym Sci.  https://doi.org/10.1002/app.44344
  25. Dresselhaus MS, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33(7):883–891CrossRefGoogle Scholar
  26. Fang YP, Xu AW, You LP et al (2003) Hydrothermal synthesis of rare earth (Tb, Y) hydroxide and oxide nanotubes. Adv Funct Mater 13(12):955–960CrossRefGoogle Scholar
  27. Frogley MD, Ravich D, Wagner HD (2003) Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos Sci Technol 63(11):1647–1654CrossRefGoogle Scholar
  28. Gaaz TS, Sulong AB, Kadhum AAH et al (2017) The impact of halloysite on the thermo-mechanical properties of polymer composites. Molecules.  https://doi.org/10.3390/molecules22050838CrossRefGoogle Scholar
  29. George N, Bipinbal P, Bhadran B et al (2017) Segregated network formation of multiwalled carbon nanotubes in natural rubber through surfactant assisted latex compounding: a novel technique for multifunctional properties. Polymer 112:264–277CrossRefGoogle Scholar
  30. Girifalco L, Hodak M, Lee RS (2000) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B 62(19):13104CrossRefGoogle Scholar
  31. Gkikas G, Barkoula NM, Paipetis A (2012) Effect of dispersion conditions on the thermo-mechanical and toughness properties of multi walled carbon nanotubes-reinforced epoxy. Compos Part B Eng 43(6):2697–2705CrossRefGoogle Scholar
  32. Gorrasi G (2015) Dispersion of halloysite loaded with natural antimicrobials into pectins: characterization and controlled release analysis. Carbohydr Polym 127:47–53CrossRefGoogle Scholar
  33. Gryshchuk O, Karger-Kocsis J, Thomann R et al (2006) Multiwall carbon nanotube modified vinylester and vinylester-based hybrid resins. Compos Part A Appl Sci Manuf 37(9):1252–1259CrossRefGoogle Scholar
  34. Guimaraes L, Enyashin AN, Seifert G et al (2010) Structural, electronic, and mechanical properties of single-walled halloysite nanotube models. J Phys Chem C 114(26):11358–11363CrossRefGoogle Scholar
  35. Hilding J, Grulke EA, Zhang ZG et al (2003) Dispersion of carbon nanotubes in liquids. J Dispersion Sci Technol 24(1):1–41CrossRefGoogle Scholar
  36. Hill DE, Lin Y, Rao AM et al (2002) Functionalization of carbon nanotubes with polystyrene. Macromolecules 35(25):9466–9471CrossRefGoogle Scholar
  37. Hwee E, Tanaka Y (1993) Structure of natural rubber. Trends Polym Sci 3:493–513Google Scholar
  38. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  39. Iijima S (1993) Growth of carbon nanotubes. Mater Sci Eng B 19(1–2):172–180CrossRefGoogle Scholar
  40. Iijima S (2002) Carbon nanotubes: past, present, and future. Phys Rev B Condens Matter 323(1–4):1–5Google Scholar
  41. Ismail H, Chia H (1998) The effects of multifunctional additive and vulcanization systems on silica filled epoxidized natural rubber compounds. Eur Polym J 34(12):1857–1863CrossRefGoogle Scholar
  42. Ismail H, Freakley P (1996) Determination of the modes of action of a cationic surfactant for property development in silica-filled natural rubber compounds. Eur Polym J 32(4):411–416CrossRefGoogle Scholar
  43. Ismail H, Pasbakhsh P, Fauzi MA et al (2008) Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites. Polym Test 27(7):841–850CrossRefGoogle Scholar
  44. Ismail H, Ramly F, Othman N (2010) Multiwall carbon nanotube-filled natural rubber: the effects of filler loading and mixing method. Polym Plast Technol Eng 49(3):260–266CrossRefGoogle Scholar
  45. Jia Z, Guo B, Jia D (2014) Advances in rubber/halloysite nanotubes nanocomposites. J Nanosci Nanotechnol 14(2):1758–1771CrossRefGoogle Scholar
  46. Job A, Oliveira F, Alves N et al (2003) Conductive composites of natural rubber and carbon black for pressure sensors. Synth Met 135:99–100CrossRefGoogle Scholar
  47. Joly S, Garnaud G, Ollitrault R et al (2002) Organically modified layered silicates as reinforcing fillers for natural rubber. Chem Mater 14(10):4202–4208CrossRefGoogle Scholar
  48. Kanagaraj S, Varanda FR, Zhil’tsova TV et al (2007) Mechanical properties of high density polyethylene/carbon nanotube composites. Compos Sci Technol 67(15–16):3071–3077CrossRefGoogle Scholar
  49. Kausar A (2018) Review on polymer/halloysite nanotube nanocomposite. Polym Plast Technol Eng 57(6):548–564CrossRefGoogle Scholar
  50. Kim Y, Hayashi T, Fukai Y et al (2002) Effect of ball milling on morphology of cup-stacked carbon nanotubes. Chem Phys Lett 355(3–4):279–284CrossRefGoogle Scholar
  51. Kim MG, Moon JB, Kim CG (2012a) Effect of CNT functionalization on crack resistance of a carbon/epoxy composite at a cryogenic temperature. Compos Part A Appl Sci Manuf 43(9):1620–1627CrossRefGoogle Scholar
  52. Kim SW, Kim T, Kim YS et al (2012b) Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50(1):3–33CrossRefGoogle Scholar
  53. Ko S, Hong M, Park B et al (2009) Morphological and rheological characterization of multi-walled carbon nanotube/PLA/PBAT blend nanocomposites. Polym Bull 63(1):125–134CrossRefGoogle Scholar
  54. Kokai F, Koshio A, Shiraishi M et al (2005) Modification of carbon nanotubes by laser ablation. Diamond Relat Mater 14(3–7):724–728CrossRefGoogle Scholar
  55. Kota AK, Cipriano BH, Duesterberg MK et al (2007) Electrical and rheological percolation in polystyrene/MWCNT nanocomposites. Macromolecules 40(20):7400–7406CrossRefGoogle Scholar
  56. Krishnaiah P, Ratnam CT, Manickam S (2017) Development of silane grafted halloysite nanotube reinforced polylactide nanocomposites for the enhancement of mechanical, thermal and dynamic-mechanical properties. Appl Clay Sci 135:583–595CrossRefGoogle Scholar
  57. Kroto H, Heath J, O’Brien S et al (1985) C60: buckminsterfullerene. Nature 318:162–163CrossRefGoogle Scholar
  58. Kuan CF, Chen CH, Kuan HC et al (2008a) Multi-walled carbon nanotube reinforced poly(l-lactic acid) nanocomposites enhanced by water-crosslinking reaction. J Phys Chem Solids 69(5–6):1399–1402CrossRefGoogle Scholar
  59. Kuan CF, Kuan HC, Ma CCM et al (2008b) Mechanical and electrical properties of multi-wall carbon nanotube/poly(lactic acid) composites. J Phys Chem Solids 69(5–6):1395–1398CrossRefGoogle Scholar
  60. Kulkarni M, Charhate N, Bhavsar K et al (2013) Development of polyaniline-multiwalled carbon nanotube (PANI-MWCNT) nanocomposite for optical pH sensor. Mater Res Innovations 17(4):238–243CrossRefGoogle Scholar
  61. Lau KT (2003) Interfacial bonding characteristics of nanotube/polymer composites. Chem Phys Lett 370(3–4):399–405CrossRefGoogle Scholar
  62. Lau KT, Chipara M, Ling HY et al (2004) On the effective elastic moduli of carbon nanotubes for nanocomposite structures. Compos Part B Eng 35(2):95–101CrossRefGoogle Scholar
  63. Lau KT, Lu M, Lam CK et al (2005) Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites: the role of solvent for nanotube dispersion. Compos Sci Technol 65(5):719–725CrossRefGoogle Scholar
  64. Le H, Oßwald K, Wießner S et al (2013) Location of dispersing agent in rubber nanocomposites during mixing process. Polymer 54(26):7009–7021CrossRefGoogle Scholar
  65. Lecouvet B, Bourbigot S, Sclavons M et al (2012) Kinetics of the thermal and thermo-oxidative degradation of polypropylene/halloysite nanocomposites. Polym Degrad Stab 97(9):1745–1754CrossRefGoogle Scholar
  66. Lee RS, Chen WH, Lin JH (2011) Polymer-grafted multi-walled carbon nanotubes through surface-initiated ring-opening polymerization and click reaction. Polymer 52(10):2180–2188CrossRefGoogle Scholar
  67. Li J, Ma PC, Chow WS et al (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17(16):3207–3215CrossRefGoogle Scholar
  68. Li Q, Church JS, Kafi A et al (2014) An improved understanding of the dispersion of multi-walled carbon nanotubes in non- aqueous solvents. J Nanopart Res.  https://doi.org/10.1007/s11051-014-2513-0
  69. Liu CX, Choi JW (2012) Improved dispersion of carbon nanotubes in polymers at high concentrations. Nanomaterials 2(4):329–347CrossRefGoogle Scholar
  70. Liu T, Phang IY, Shen L et al (2004) Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 37(19):7214–7222CrossRefGoogle Scholar
  71. Liu M, Guo B, Du M et al (2009) Halloysite nanotubes as a novel β-nucleating agent for isotactic polypropylene. Polymer 50(13):3022–3030CrossRefGoogle Scholar
  72. Liu M, Jia Z, Jia D et al (2014) Recent advance in research on halloysite nanotubes-polymer nanocomposite. Prog Polym Sci 39(8):1498–1525CrossRefGoogle Scholar
  73. Lou X, Detrembleur C, Sciannamea V et al (2004) Grafting of alkoxyamine end-capped (co) polymers onto multi-walled carbon nanotubes. Polymer 45(18):6097–6102CrossRefGoogle Scholar
  74. Ma PC, Tang BZ, Kim JK (2008) Conversion of semiconducting behavior of carbon nanotubes using ball milling. Chem Phys Lett 458(1–3):166–169CrossRefGoogle Scholar
  75. Ma PC, Wang SQ, Kim JK et al (2009) In-situ amino functionalization of carbon nanotubes using ball milling. J Nanosci Nanotechnol 9(2):749–753CrossRefGoogle Scholar
  76. Ma PC, Siddiqui NA, Marom G et al (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A 41(10):1345–1367CrossRefGoogle Scholar
  77. Marney D, Russell L, Wu D et al (2008) The suitability of halloysite nanotubes as a fire retardant for nylon 6. Polym Degrad Stab 93(10):1971–1978CrossRefGoogle Scholar
  78. Mat Desa M, Hassan A, Arsad A et al (2014) Mechanical properties of poly(lactic acid)/multiwalled carbon nanotubes nanocomposites. Mater Res Innovations 18(6):S6-14–S16-17CrossRefGoogle Scholar
  79. McNally T, Pötschke P, Halley P et al (2005) Polyethylene multiwalled carbon nanotube composites. Polymer 46(19):8222–8232CrossRefGoogle Scholar
  80. Meira SMM, Zehetmeyer G, Werner JO et al (2017) A novel active packaging material based on starch-halloysite nanocomposites incorporating antimicrobial peptides. Food Hydrocoll 63:561–570CrossRefGoogle Scholar
  81. Mina MF, Shohrawardy M, Khan MA et al (2013) Improved mechanical performances of triple super phosphate treated jute-fabric reinforced polypropylene composites irradiated by gamma rays. J Appl Polym Sci 130(1):470–478CrossRefGoogle Scholar
  82. Mina M, Beg M, Islam M et al (2014) Structures and properties of injection-molded biodegradable poly(lactic acid) nanocomposites prepared with untreated and treated multiwalled carbon nanotubes. Polym Eng Sci 54(2):317–326CrossRefGoogle Scholar
  83. Modesti M, Besco S, Lorenzetti A (2009) Effect of processing conditions on the morphology and properties of polymer nanocomposites. In: Mittal V (ed) Optimization of polymer nanocomposite properties, 1st edn. Wiley-VCH, Germany, pp 369–405Google Scholar
  84. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205CrossRefGoogle Scholar
  85. Monti M, Puglia D, Natali M et al (2011) Effect of carbon nanofibers on the cure kinetics of unsaturated polyester resin: thermal and chemorheological modelling. Compos Sci Technol 71(12):1507–1516Google Scholar
  86. Moon SI, Jin F, Lee CJ et al (2005) Novel carbon nanotube/poly(l-lactic acid) nanocomposites; their modulus, thermal stability, and electrical conductivity. Macromol Symp 224(1):287–296CrossRefGoogle Scholar
  87. Niu H, Gao M (2006) Diameter-tunable CdTe nanotubes templated by 1D nanowires of cadmium thiolate polymer. Angew Chem Int Ed 45(39):6462–6466CrossRefGoogle Scholar
  88. Niyogi S, Hamon M, Hu H et al (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35(12):1105–1113CrossRefGoogle Scholar
  89. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefGoogle Scholar
  90. Novoselov K, Jiang D, Schedin F et al (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102(30):10451–10453CrossRefGoogle Scholar
  91. Offringa AR (1996) Thermoplastic composites-rapid processing applications. Compos A 27(4):329–336CrossRefGoogle Scholar
  92. Pan B, Cui D, Xu P et al (2009) Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems. Nanotechnology.  https://doi.org/10.1088/0957-4484/20/12/125101CrossRefGoogle Scholar
  93. Pang H, Xu L, Yan DX et al (2014) Conductive polymer composites with segregated structures. Prog Polym Sci 39(11):1908–1933CrossRefGoogle Scholar
  94. Pasbakhsh P, Churchman GJ, Keeling JL (2013) Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers. Appl Clay Sci 74:47–57CrossRefGoogle Scholar
  95. Pedrazzoli D, Pegoretti A, Thomann R et al (2015) Toughening linear low-density polyethylene with halloysite nanotubes. Polym Compos 36(5):869–883CrossRefGoogle Scholar
  96. Pirlot C, Mekhalif Z, Fonseca A et al (2003) Surface modifications of carbon nanotube/polyacrylonitrile composite films by proton beams. Chem Phys Lett 372(3–4):595–602CrossRefGoogle Scholar
  97. Ponnamma D, Sadasivuni KK, Strankowski M et al (2013) Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application. Soft Matter 9(43):10343–10353CrossRefGoogle Scholar
  98. Ponnamma D, Sung SH, Hong JS et al (2014) Influence of non-covalent functionalization of carbon nanotubes on the rheological behavior of natural rubber latex nanocomposites. Eur Polym J 53:147–159CrossRefGoogle Scholar
  99. Prashantha K, Lacrampe M, Krawczak P (2011) Processing and characterization of halloysite nanotubes filled polypropylene nanocomposites based on a masterbatch route: effect of halloysites treatment on structural and mechanical properties. Express Polym Lett 5(4):295–307CrossRefGoogle Scholar
  100. Qiao X, Na M, Gao P et al (2017) Halloysite nanotubes reinforced ultrahigh molecular weight polyethylene nanocomposite films with different filler concentration and modification. Polym Test 57:133–140CrossRefGoogle Scholar
  101. Ramontja J, Ray SS, Pillai SK et al (2009) High-performance carbon nanotube-reinforced bioplastic. Macromol Mater Eng 294(12):839–846CrossRefGoogle Scholar
  102. Raquez JM, Deléglise M, Lacrampe MF et al (2010) Thermosetting (bio) materials derived from renewable resources: a critical review. Prog Polym Sci 35(4):487–509CrossRefGoogle Scholar
  103. Rastogi R, Kaushal R, Tripathi S et al (2008) Comparative study of carbon nanotube dispersion using surfactants. J Colloid Interface Sci 328(2):421–428CrossRefGoogle Scholar
  104. Rooj S, Das A, Thakur V et al (2010) Preparation and properties of natural nanocomposites based on natural rubber and naturally occurring halloysite nanotubes. Mater Des 31(4):2151–2156CrossRefGoogle Scholar
  105. Rouison D, Sain M, Couturier M (2004) Resin transfer molding of natural fiber reinforced composites: cure simulation. Compos Sci Technol 64(5):629–644CrossRefGoogle Scholar
  106. Sadasivuni KK, Ponnamma D, Thomas S et al (2014) Evolution from graphite to graphene elastomer composites. Prog Polym Sci 39(4):749–780CrossRefGoogle Scholar
  107. Saharudin MS, Wei J, Shyha I et al (2016) The degradation of mechanical properties in halloysite nanoclay-polyester nanocomposites exposed in seawater environment. J Nanomater.  https://doi.org/10.1155/2016/2604631CrossRefGoogle Scholar
  108. Sahnoune M, Taguet A, Otazaghine B et al (2017) Effects of functionalized halloysite on morphology and properties of polyamide-11/SEBS-g-MA blends. Eur Polym J 90:418–430CrossRefGoogle Scholar
  109. Sahoo NG, Rana S, Cho JW et al (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35(7):837–867CrossRefGoogle Scholar
  110. Saif MJ, Naveed M, Zia KM et al (2016) Pristine and γ-irradiated halloysite reinforced epoxy nanocomposites-insight study. Radiat Phys Chem 127:115–121CrossRefGoogle Scholar
  111. Sandler J, Shaffer M, Prasse T et al (1999) Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40(21):5967–5971CrossRefGoogle Scholar
  112. Shao H, Gao M, Kim SH et al (2011) Aqueous self-assembly of l-lysine-based amphiphiles into 1D n-type nanotubes. Chem A Eur J 17(46):12882–12885CrossRefGoogle Scholar
  113. Shearer G, Tzoganakis C (1999) Analysis of mixing during melt-melt blending in twin screw extruders using reactive polymer tracers. Polym Eng Sci 39(9):1584–1596CrossRefGoogle Scholar
  114. Shearer G, Tzoganakis C (2001) Distributive mixing profiles for co-rotating twin-screw extruders. Adv Polym Technol 20(3):169–190CrossRefGoogle Scholar
  115. Shi Y, Li Y, Wu J et al (2011) Toughening of poly (l-lactide)/multiwalled carbon nanotubes nanocomposite with ethylene-co-vinyl acetate. J Polym Sci Part B Polym Phys 49(4):267–276CrossRefGoogle Scholar
  116. Shubhra QT, Alam A (2011) Effect of gamma radiation on the mechanical properties of natural silk fiber and synthetic E- glass fiber reinforced polypropylene composites: a comparative study. Radiat Phys Chem 80(11):1228–1232CrossRefGoogle Scholar
  117. Singh RP, Jain S, Ramarao P (2013) Surfactant-assisted dispersion of carbon nanotubes: mechanism of stabilization and biocompatibility of the surfactant. J Nanopart Res.  https://doi.org/10.1007/s11051-013-1985-7
  118. Singh VP, Vimal K, Kapur G et al (2016) High-density polyethylene/halloysite nanocomposites: morphology and rheological behaviour under extensional and shear flow. J Polym Res.  https://doi.org/10.1007/s10965-016-0937-1
  119. Song W, Zheng Z, Lu H et al (2008) Incorporation of multi-walled carbon nanotubes into biodegradable telechelic prepolymers. Macromol Chem Phys 209(3):315–321CrossRefGoogle Scholar
  120. Soradech S, Limatvapirat S, Luangtana-anan M (2013) Stability enhancement of shellac by formation of composite film: effect of gelatin and plasticizers. J Food Eng 116(2):572–580CrossRefGoogle Scholar
  121. Stephen R, Thomas S (2010) Nanocomposites: state of the art, new challenges and opportunities. In: Thomas S, Stephen R (eds) Rubber nanocomposites: preparation, properties, and applications, 1st edn. Wiley, Singapore, pp 1–20Google Scholar
  122. Subramaniam K, Das A, Simon F et al (2013) Networking of ionic liquid modified CNTs in SSBR. Eur Polym J 49(2):345–352CrossRefGoogle Scholar
  123. Sui G, Zhong W, Yang X et al (2007) Processing and material characteristics of a carbon-nanotube-reinforced natural rubber. Macromol Mater Eng 292(9):1020–1026CrossRefGoogle Scholar
  124. Sui G, Zhong W, Yang X et al (2008) Curing kinetics and mechanical behavior of natural rubber reinforced with pretreated carbon nanotubes. Mater Sci Eng A 485(1–2):524–531CrossRefGoogle Scholar
  125. Szpilska K, Czaja K, Kudła S (2015) Halloysite nanotubes as polyolefin fillers. Polimery 60:359–371CrossRefGoogle Scholar
  126. Tarachiwin L, Sakdapipanich J, Ute K et al (2005) Structural characterization of α-terminal group of natural rubber. 2. Decomposition of branch-points by phospholipase and chemical treatments. Biomacromolecules 6(4):1858–1863CrossRefGoogle Scholar
  127. Terrones M, Hsu W, Schilder A et al (1998) Novel nanotubes and encapsulated nanowires. Appl Phys A Mater Sci Process 66(3):307–317CrossRefGoogle Scholar
  128. Therias S, Murariu M, Dubois P (2017) Bionanocomposites based on PLA and halloysite nanotubes: from key properties to photooxidative degradation. Polym Degrad Stab 145:60–69CrossRefGoogle Scholar
  129. Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912CrossRefGoogle Scholar
  130. Thostenson ET, Ziaee S, Chou TW (2009) Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites. Compos Sci Technol 69(6):801–804CrossRefGoogle Scholar
  131. Touny AH, Lawrence JG, Jones AD (2010) Effect of electrospinning parameters on the characterization of PLA/HNT nanocomposite fibers. J Mater Res 25(5):857–865CrossRefGoogle Scholar
  132. Vahedi V, Pasbakhsh P, Chai SP (2015) Toward high performance epoxy/halloysite nanocomposites: new insights based on rheological, curing, and impact properties. Mater Des 68:42–53CrossRefGoogle Scholar
  133. Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128:37–46CrossRefGoogle Scholar
  134. Varghese S, Karger-Kocsis J (2003) Natural rubber-based nanocomposites by latex compounding with layered silicates. Polymer 44(17):4921–4927CrossRefGoogle Scholar
  135. Vast L, Philippin G, Destree A et al (2004) Chemical functionalization by a fluorinated trichlorosilane of multi-walled carbon nanotubes. Nanotechnology 15(7):781CrossRefGoogle Scholar
  136. Velasco-Santos C, Martinez-Hernandez A, Lozada-Cassou M et al (2002) Chemical functionalization of carbon nanotubes through an organosilane. Nanotechnology 13(4):495–498CrossRefGoogle Scholar
  137. Vichchulada P, Cauble MA, Abdi EA et al (2010) Sonication power for length control of single-walled carbon nanotubes in aqueous suspensions used for 2-dimensional network formation. J Phys Chem C 114(29):12490–12495CrossRefGoogle Scholar
  138. Villmow T, Pötschke P, Pegel S et al (2008) Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer 49(16):3500–3509CrossRefGoogle Scholar
  139. Wan X, Zhan Y, Zeng G et al (2017) Nitrile functionalized halloysite nanotubes/poly(arylene ether nitrile) nanocomposites: Interface control, characterization, and improved properties. Appl Surf Sci 393:1–10CrossRefGoogle Scholar
  140. Wang B, Huang HX (2013) Effects of halloysite nanotube orientation on crystallization and thermal stability of polypropylene nanocomposites. Polym Degrad Stab 98(9):1601–1608CrossRefGoogle Scholar
  141. Wang B, Huang HX (2014) Incorporation of halloysite nanotubes into PVDF matrix: nucleation of electroactive phase accompany with significant reinforcement and dimensional stability improvement. Compos A 66:16–24CrossRefGoogle Scholar
  142. Wang J, Chu H, Li Y (2008) Why single-walled carbon nanotubes can be dispersed in imidazolium-based ionic liquids. ACS Nano 2(12):2540–2546CrossRefGoogle Scholar
  143. Wang S, Chang K, Yuan C (2009) Enhancement of electrochemical properties of screen-printed carbon electrodes by oxygen plasma treatment. Electrochim Acta 54(21):4937–4943CrossRefGoogle Scholar
  144. Wang J, Liu J, Zhou Y et al (2013) One-pot facile synthesis of hierarchical hollow microspheres constructed with MnO2 nanotubes and their application in lithium storage and water treatment. RSC Adv 3(48):25937–25943CrossRefGoogle Scholar
  145. Wu CS, Liao HT (2007) Study on the preparation and characterization of biodegradable polylactide/multi-walled carbon nanotubes nanocomposites. Polymer 48(15):4449–4458CrossRefGoogle Scholar
  146. Wu D, Wu L, Zhang M et al (2008) Viscoelasticity and thermal stability of polylactide composites with various functionalized carbon nanotubes. Polym Degrad Stab 93(8):1577–1584CrossRefGoogle Scholar
  147. Wu D, Zhang Y, Zhang M et al (2009) Selective localization of multiwalled carbon nanotubes in poly(ε-caprolactone)/ polylactide blend. Biomacromol 10(2):417–424CrossRefGoogle Scholar
  148. Wu M, Huang HX, Tong J (2016a) Enhancing β-phase content and tensile properties in poly(vinylidene fluoride) by adding halloysite nanotubes and injecting water during extrusion. Mater Des 108:761–768CrossRefGoogle Scholar
  149. Wu Y, Du Z, Wang H et al (2016b) Preparation of waterborne polyurethane nanocomposite reinforced with halloysite nanotubes for coating applications. J Appl Polym Sci.  https://doi.org/10.1002/app.43949
  150. Xiao K, Zhang L (2004) The stress transfer efficiency of a single-walled carbon nanotube in epoxy matrix. J Mater Sci 39(14):4481–4486CrossRefGoogle Scholar
  151. Yang LP, Pan CY (2008) A non-covalent method to functionalize multi-walled carbon nanotubes using six-armed star poly(l-lactic acid) with a triphenylene core. Macromol Chem Phys 209(8):783–793CrossRefGoogle Scholar
  152. Yang Z, Huang X, Zhao Q et al (2012) Hydrogen-bonded 1D nanotubes and 2D layers of group 12 metal complexes with a pyridylurea ligand. Cryst Eng Comm 14(17):5446–5453CrossRefGoogle Scholar
  153. Ye Y, Chen H, Wu J et al (2007) High impact strength epoxy nanocomposites with natural nanotubes. Polymer 48(21):6426–6433CrossRefGoogle Scholar
  154. Ye J, Zhang H, Yang R et al (2010) Morphology-controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small 6(2):296–306CrossRefGoogle Scholar
  155. Yoon JT, Jeong YG, Lee SC et al (2009) Influences of poly(lactic acid)-grafted carbon nanotube on thermal, mechanical, and electrical properties of poly(lactic acid). Polym Adv Technol 20(7):631–638CrossRefGoogle Scholar
  156. Yu J, Grossiord N, Koning CE et al (2007) Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 45(3):618–623CrossRefGoogle Scholar
  157. Yuan Q, Misra R (2006) Polymer nanocomposites: current understanding and issues. Mater Sci Technol 22(7):742–755CrossRefGoogle Scholar
  158. Zou J, Zhang YC, Huang J et al (2009) Preparation and properties of PP/PLA/multiwall carbon nanotube composites filaments obtained by melt compounding. Mater Sci Forum 620–622:465–468CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nilesh Kumar Shrivastava
    • 1
  • Muhammad Akmal Ahmad Saidi
    • 1
  • M. S. Z. Mat Desa
    • 3
  • Mohamad Zurina
    • 1
  • Norhayani Othman
    • 1
  • Azman Hassan
    • 1
    • 2
    Email author
  • A. K. M. Moshiul Alam
    • 3
  • M. D. H. Beg
    • 3
  • R. M. Yunus
    • 3
  1. 1.Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia
  2. 2.Centre for Advanced Composite MaterialsUniversiti Teknologi MalaysiaSkudaiMalaysia
  3. 3.Faculty of Chemical and Natural Resources EngineeringUniversiti Malaysia PahangGambang, KuantanMalaysia

Personalised recommendations