Advertisement

Bacterial Cellulose Nanocomposites

  • N. Pa’e
  • I. I. MuhamadEmail author
  • Z. Hashim
  • A. H. M. Yusof
Chapter

Abstract

Bacterial cellulose (BC) is a biopolymer with high purity of cellulose and excellent mechanical properties. Increased interest in the use of natural polymer makes BC as an excellent alternative for plant cellulose. Although both celluloses consist of unbranched pellicle with chemically equivalent structure, bacterial cellulose exhibits greater properties and potential in wider applications. The structure of bacterial cellulose that consists only glucose monomer and nanosized cellulose fibres secreted by the bacteria induces it to have high water-holding capacity, high crystallinity, high degree of polymerization and high mechanical strength. Furthermore, the characterization of BC can be certainly altered by incorporation with materials that are not essential for the bacterial growth into the fermentation medium. This unique property of BC opens a new gate for the development of new cellulose nanocomposites with desired properties by the incorporation of selective suitable materials. The BC nanocomposites produced opens new opportunity for various usages of BC in different fields of application in the pharmaceutical, chemical, medical and wastewater treatment plants.

Keywords

Bacterial cellulose Bacterial cellulose composites Nanocomposites Biopolymer composites 

References

  1. Aleshin AN, Berestennikov AS, Krylov PS, Shcherbakov IP, Petrov VN, Trapeznikova IN, Mamalimov RI, Khripunov AK, Tkachenkob AA (2015) Electrical and optical properties of bacterial cellulose films modified with conductive polymer PEDOT/PSS. Synth Met 199:147–151CrossRefGoogle Scholar
  2. Amin MCM, Abadi AG, Ahmad N, Katas H, Jamal JA (2012) Bacterial cellulose film coating as drug delivery system: physicochemical, thermal and drug release properties. Sains Malaysiana 41(5):561–568Google Scholar
  3. Arias SL, Shetty AR, Senpan A, Echeverry-Rendón M, Reece LM, JAllain JP (2016) Fabrication of a functionalized magnetic bacterial nanocellulose with iron oxide nanoparticles. J Vis Exp 26:111Google Scholar
  4. Ashori A, Sheykhnazari S, Tabarsa T, Shakeri A, Golalipour M (2012) Bacterial cellulose/silica nanocomposites: preparation and characterization. Carbohydr Polym 90:413–418CrossRefGoogle Scholar
  5. Barud HGO, Barud HS, Cavicchioli M, do Amaral TS, de Oliveira Junior OB, Santos DM, de Oliveira Almeida Petersen AL, Celes F, Borges VM, de Oliveira CI, de Oliveira PF, Furtado RA, Tavares DC, Ribeiro SJL (2016) Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration. Carbohydr Polym 128:41–51Google Scholar
  6. Bertocchi C, Delneri D, Signore S, Weng Z, Bruschi CV (1997) Characterization of microbial cellulose from a high-producing mutagenized Acetobacter pasteurianus strain. Biochem Biophys Acta 1336:211–217CrossRefGoogle Scholar
  7. Budhiono A, Rosidi B, Taher H, Iguchi M (1999) Kinetics aspects of bacterial cellulose formation in nata de coco culture system. Carbohydr Polym 40:137–143CrossRefGoogle Scholar
  8. Busuioc C, Stroescu M, Stoica-Guzun A, Voicu G, Jinga SI (2016) Fabrication of 3D calcium phosphates based scaffolds using bacterial cellulose as template. Ceram Int 42(14):15449–15458CrossRefGoogle Scholar
  9. Charpentier PA, Maguire A, Wan WK (2006) Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device. Appl Surf Sci 252:6360–6367CrossRefGoogle Scholar
  10. Chen S, Zou Y, Yan Z, Shen W, Shi S, Zhang X, Wang H (2009) Carboxymethylated-bacterial cellulose for copper and lead ion removal. J Hazard Mater 161:1355–1359CrossRefGoogle Scholar
  11. Cheng KC, Catchmark JM, Demirci A (2009) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng 3(12)Google Scholar
  12. Czaja W, Romanovicz D, Brown RM Jr (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11(3):401–411Google Scholar
  13. Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr (2006) Microbial cellulose—the natural power to heal wound. Biomaterials 27:145–151CrossRefGoogle Scholar
  14. da Silva R, Sierakowski MR, Bassani HP, Zawadzki SF, Pirich CL, Ono L, de Freitas RA (2016) Hydrophilicity improvement of mercerized bacterial cellulose films by polyethylene glycol. Int J Biol Macromol 86:599–605CrossRefGoogle Scholar
  15. Dayal MS, Catchmark JM (2016) Mechanical and structural property analysis of bacterial cellulose composites. Carbohydr Polym 144:447–453CrossRefGoogle Scholar
  16. De Wulf P, Joris K, Vandamme EJ (1996) Improved cellulose formation by an Acetobacter xylinum mutant limited in keto gluconate synthesis. J Chem Technol Biotechnol 67:665–672Google Scholar
  17. Evans BR, O’Neill HM, Malyvanh VP, Lee I, Woodward J (2003) Palladium-bacterial cellulose membranes for fuel cells. Biosens Bioelectron 18:917–923CrossRefGoogle Scholar
  18. Feng Y, Zhanga X, Shena Y, Yoshino K, Feng W (2012) A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocomposite. Carbohydr Polym 87:644–649CrossRefGoogle Scholar
  19. Fijałkowski K, Żywicka A, Drozd R, Niemczyk A, Junka AF, Peitler D, Kordas M, Konopacki M, Szymczyk P, Fray ME, Rakoczy R (2015) A modification of bacterial cellulose through exposure to the rotating magnetic field. Carbohydr Polym 133:52–60CrossRefGoogle Scholar
  20. Foresti ML, Vázquez A, Boury B (2017) Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: a review of recent advances. Carbohydr Polym 157:447–467CrossRefGoogle Scholar
  21. Fu L, Zhang Y, Zhang J, Yang G (2011) Bacterial cellulose for skin repair materials. In: Fazel-Rezai R (ed) Biomedical engineering—frontiers and challenges. In-Tech.Rijeka, CroatiaGoogle Scholar
  22. Gao C, Yan T, Du J, He F, Luo H, Wan Y (2014) Introduction of broad spectrum antibacterial properties to bacterial cellulose nanofibers via immobilising ε-polylysine nanocoatings. Food Hydrocolloids 36:204–211CrossRefGoogle Scholar
  23. Gelin K, Bodin A, Gatenholm P, Mihranyan A, Edwards K, Strømme M (2007) Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polymer 48(26):7623–7631CrossRefGoogle Scholar
  24. George J, Kumar R, Sajeevkumar VA, Ramana KV, Rajamanickam R, Abhishek V, Nadanasabapathy SS (2014) Hybrid HPMC nanocomposites containing bacterial cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 105:285–292CrossRefGoogle Scholar
  25. Gindl W, Keckes J (2004) Tensile properties of cellulose acetate butyrate composites reinforced with bacterial cellulose. Compos Sci Technol 64(15):2407–2413CrossRefGoogle Scholar
  26. González-Sánchez C, Martínez-Aguirre A, Pérez-García B, Martínez-Urreaga J, de la Orden MU, Fonseca-Valero C (2014) Use of residual agricultural plastics and cellulose fibers for obtaining sustainable eco-composites prevents waste generation. J Clean Prod 83:228–237CrossRefGoogle Scholar
  27. Gutierrez J, Tercjak A, Algar I, Retegi A, Mondragon I (2012) Conductive properties of TiO2/bacterial cellulose hybrid fibres. J Colloid Interface Sci 377(1):88–93CrossRefGoogle Scholar
  28. Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345–352CrossRefGoogle Scholar
  29. Horii F, Yamamoto H, Hirai A (1997) Microstructural analysis of microfibrils of bacterial cellulose. Macromol Symp 120:197–205CrossRefGoogle Scholar
  30. Hsieh JT, Wang MJ, Lai JT, Liu HS (2016) A novel static cultivation of bacterial cellulose production by intermittent feeding strategy. J Taiwan Inst Chem Eng 63:46–51CrossRefGoogle Scholar
  31. Hu W, Chen S, Yang Z, Liu L, Wang H (2011) Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J Phys Chem B 115:8453–8845CrossRefGoogle Scholar
  32. Hwang JW, Yang YK, Hwang JK, Pyun YR, Kim YS (1999) Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRCS in agitated culture. J Biosci Bioeng 88(2):183–188CrossRefGoogle Scholar
  33. Iguchi M, Huang HC, Chen LC, Lina SB, Chen HH (2011) Nano-biomaterials application: In situ modification of bacterial cellulose structure by adding HPMC during fermentation. Carbohydr Polym 83:979–987CrossRefGoogle Scholar
  34. Jeon S, Yoo YM, Park JW, Kim HJ, Hyun J (2014) Electrical conductivity and optical transparency of bacterial cellulose based composite by static and agitated methods. Curr Appl Phys 14(12):1621–1624CrossRefGoogle Scholar
  35. Jonas R, Farah LF (1997) Production and application of microbial cellulose. J Polym Degrad Stab 59:101–106CrossRefGoogle Scholar
  36. Juncu G, Stoica-Guzun A, Stroescu M, Isopencu G, Jinga SI (2015) Drug release kinetics from carboxymethyl cellulose-bacterial cellulose composite films. Int J Pharm 510(2):485–492CrossRefGoogle Scholar
  37. Khairul AZ, Norhayati P, Ida IM (2016) An evaluation of fermentation period and discs rotation speed of rotary discs reactor for bacterial cellulose production. Sains Malaysiana 45(3):393–400Google Scholar
  38. Kim SY, Kim JN, Wee YJ, Park DH, Ryu HW (2006) Production of bacterial cellulose by Gluconacetobacter sp. RKY5 isolated from persimmon vinegar. Appl Biochem Biotechnol 129–132:705–715CrossRefGoogle Scholar
  39. Kim J, Cai Z, Lee HS, Choi GS (2011) Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. J Polym Res 18:739–744CrossRefGoogle Scholar
  40. Kirdponpattara S, Khamkeaw A, Sanchavanakit N, Pavasant P, Phisalaphong M (2015) Structural modification and characterization of bacterial cellulose–alginate composite scaffolds for tissue engineering. Carbohydr Polym 132:146–155CrossRefGoogle Scholar
  41. Kiziltas EE, Kiziltas A, Rhodes K, Emanetoglu NW, Blumentritt M, Gardner DJ (2016) Electrically conductive nano graphite-filled bacterial cellulose composites. Carbohydr Polym 136:1144–1151CrossRefGoogle Scholar
  42. Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603CrossRefGoogle Scholar
  43. Lee RL, Paul JW, Willem HZ, Isak SP (2002) Microbial cellulose utilization: fundamentals and biotechnology. J Microbiol Mol Biol Rev 66(3):506–577CrossRefGoogle Scholar
  44. Lee BH, Kim HJ, Yang HS (2012) Polymerization of aniline on bacterial cellulose and characterization of bacterial cellulose/polyaniline nanocomposite films. Curr Appl Phys 12:75–80CrossRefGoogle Scholar
  45. Legeza VI, Galenko-Yaroshevskii VP, Zinov’ev EV, Paramonov BA (2004) Effects of new wound dressings on healing of thermal burns of the skin in acute radiation disease. Bull Exp Biol Med 138:311–315CrossRefGoogle Scholar
  46. Li Z, Zhu BJ, Yang JX, Peng K, Zhou BH, Xu RQ, Hu WL, Chen SY, Wang HP (2011) Method for manufacture of bacterial cellulose hydrogel cold pack. CN Patent No 201020239963.4Google Scholar
  47. Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94(1):603–611CrossRefGoogle Scholar
  48. Liyaskina E, Revin V, Paramonova E, Nazarkina M, Pestov N, Revina N, Kolesnikova S (2017) Nanomaterials from bacterial cellulose for antimicrobial wound dressing. J Phys Conf Ser 784:(1)CrossRefGoogle Scholar
  49. Lu M, Li YY, Guan XH, Wei DZ (2010) Preparation of bacterial cellulose and its adsorption of Cd2+. J Northeast Univ 31(8):1196–1199Google Scholar
  50. Lu M, Guan XH, Xu X, Wei D (2013) Characteristic and mechanism of Cr(VI) adsorption by ammonium sulfamate-bacterial cellulose in aqueous solutions. Chin Chem Lett 24:253–256CrossRefGoogle Scholar
  51. Lu M, Zhang YM, Guan XH, Xu X, Gao T (2014) Thermodynamics and kinetics of adsorption for heavy metal ions from aqueous solutions onto surface amino-bacterial cellulose. Trans Nonferrous Metals Soc China 24:1912–1917CrossRefGoogle Scholar
  52. Luo H, Ao H, Li G, Li W, Xiong G, Zhu Y, Wan Y (2017) Advanced nano- and bio-materials: a pharmaceutical approach bacterial cellulose/graphene oxide nanocomposite as a novel drug delivery system. Curr Appl Phys 17(2):249–254CrossRefGoogle Scholar
  53. Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51CrossRefGoogle Scholar
  54. Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2013) High-barrier coated bacterial cellulose nanowhiskers films with reduced moisture sensitivity. Carbohydr Polym 98:1072–1082CrossRefGoogle Scholar
  55. Mormino R, Bungay H (2003) Composites of bacterial cellulose and papermade with a rotating disk bioreactor. Appl Microbiol Biotechnol 62:503–506CrossRefGoogle Scholar
  56. Muller D, Rambo CR, Recouvreux DOS, Porto LM (2011) Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers. Synth Met 161:106–111CrossRefGoogle Scholar
  57. Muller D, Mandelli JS, Marins JA, Soares BG (2012) Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC). Cellulose 19:1645–1654CrossRefGoogle Scholar
  58. Müller A, Ni Z, Hessler N, Wesarg F, Müller FA, Kralisch D, Fischer D (2013) The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J Pharm Sci 102:579–592CrossRefGoogle Scholar
  59. Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14:1124–1128CrossRefGoogle Scholar
  60. Naritomi T, Kouda T, Yano H, Yoshinaga F (1998) Effect of ethanol on bacterial cellulose production from fructose in continuous culture. J Ferment Bioeng 85(6):598–603CrossRefGoogle Scholar
  61. O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Biores Technol 99:6709–6724CrossRefGoogle Scholar
  62. Pa’e N (2009) Rotary discs reactor for enhanced production microbial cellulose. Master thesis, Universiti Teknologi Malaysia, SkudaiGoogle Scholar
  63. Pa’e N, Zahan KA, Muhamad II (2011) Production of biopolymer from acetobacter xylinum using different fermentation methods. Int J Eng Technol (IJET-IJEN) 11(5):90–98Google Scholar
  64. Pa’e N, Zahan KA, Muhamada II, Kok FS (2013) Modified fermentation for production of bacterial cellulose/polyaniline as conductive biopolymer material. Jurnal Teknologi 62(2):21–23Google Scholar
  65. Park M, Cheng J, Choi J, Kim J, Hyun J (2013) Electromagnetic nanocomposite of bacterial cellulose using magnetite nanoclusters and polyaniline. Colloids Surf B 102:238–242CrossRefGoogle Scholar
  66. Pavaloiu RD, Stoica-Guzun A, Stroescu M, Jinga SI, Dobre T (2014) Composite films of poly(vinyl alcohol)–chitosan–bacterial cellulose for drug controlled release. Int J Biol Macromol 68:117–124CrossRefGoogle Scholar
  67. Paximada P, Dimitrakopoulou EA, Tsouko E, Koutinas AA, Fasseas C, Mandala IG (2016) Structural modification of bacterial cellulose fibrils under ultrasonic irradiation. Carbohydr Polym 150:5–12CrossRefGoogle Scholar
  68. Pei Y, Yang J, Liu P, Xu M, Zhang X, Zhang L (2013) Fabrication, properties and bioapplications of cellulose/collagen hydrolysate composite films. Carbohydr Polym 92:1752–1760CrossRefGoogle Scholar
  69. Piccinno F, Hischier R, Saba A, Mitrano D, Seeger S, Som C (2015) Multi-perspective application selection: a method to identify sustainable applications for new materials using the example of cellulose nanofiber reinforced composites. J Clean Prod 112:1199–1210CrossRefGoogle Scholar
  70. Pircher N, Veigel S, Aignea N, Nedelecc JM, Rosenau T, Liebner F (2014) Reinforcement of bacterial cellulose aerogels with biocompatible polymers. Carbohydr Polym 111:505–513CrossRefGoogle Scholar
  71. Ruka DR, Simon GP, Deana KM (2013) In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohydr Polym 92:1717–1723CrossRefGoogle Scholar
  72. Sai H, Fu R, Xing L, Xiang J, Li Z, Li F, Zhang T (2015) Surface modification of bacterial cellulose aerogels web-like skeleton for oil/water separation. ACS Appl Mater Interfaces 7(13):7373–7381CrossRefGoogle Scholar
  73. Saibuatong O, Phisalaphong M (2010) Novo aloe vera—bacterial cellulose composite film from biosynthesis. Carbohydr Polym 79:455–460CrossRefGoogle Scholar
  74. Salehudin MH, Salleh E, Muhamad II, Mamat SNH (2014) Starch-based biofilm reinforced with empty fruit bunch cellulose nanofibre. Mater Res Innovations 18:322–325CrossRefGoogle Scholar
  75. Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. Microbiology 11:123–129Google Scholar
  76. Serafica G, Mormino R, Bungay H (2002) Inclusion of solid particles in bacterial cellulose. Appl Microbiol Biotechnol 58:756–760CrossRefGoogle Scholar
  77. Shah J, Brown RM Jr (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66(4):352–355CrossRefGoogle Scholar
  78. Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598CrossRefGoogle Scholar
  79. Shanshan G, Jianqing W, Zhengwei J (2012) Preparation of cellulose films from solution of bacterial cellulose in NMMO. Carbohydr Polym 87(2):1020–1025CrossRefGoogle Scholar
  80. Shirai A, Takahashi M, Kaneko H, Nishimura S, Ogawa M, Nishi N, Tokura S (1994) Biosynthesis of a novel polysaccharide by Acetobacter xylinum. Int J Biol Macromol 16(6):297–300CrossRefGoogle Scholar
  81. Slavutsky MA, Bertuzzi MA (2014) Water barrier properties of starch films reinforced with cellulosenanocrystals obtained from sugarcane bagasse. Carbohydr Polym 110:53–61CrossRefGoogle Scholar
  82. Sokolnicki AM, Fisher RJ, Harrah TP, Kaplan DL (2006) Permeability of bacterial cellulose membranes. J Membr Sci 272(1–2):15–27CrossRefGoogle Scholar
  83. Son HJ, Heo MS, Kim YG, Lee SJ (2001) Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures. Biotechnol Appl Biochem 33(1):1–3CrossRefGoogle Scholar
  84. Son HJ, Kim HG, Kim KK, Kim HS, Kim YG, Lee SJ (2003) Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Biores Technol 86(3):215–219CrossRefGoogle Scholar
  85. Tang W, Jia S, Jia Y, Yang H (2010) The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J Microbiol Biotechnol 26:125–131CrossRefGoogle Scholar
  86. Toru S, Kazunori T, Masaya K, Tetsuya M, Takaaki N, Shingeru M, Kenji K (2005) Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp. J Biosci Bioeng 99(4):415–422CrossRefGoogle Scholar
  87. Tsuchida T, Yoshinaga F (1997) Production of bacterial cellulose by agitation culture system. J Pure Appl Chem 69(11):2453–2458CrossRefGoogle Scholar
  88. Tyagi N, Suresh S (2015) Production of cellulose from sugarcane molasses using Gluconacetobacter intermedius SNT-1: optimization & characterization. J Clean Prod 112:71–80CrossRefGoogle Scholar
  89. Ul-Islam M, Khan T, Park JK (2012) Nanoreinforced bacterial cellulose–montmorillonite composites for biomedical applications. Carbohydr Polym 89(4):1189–1197CrossRefGoogle Scholar
  90. Ummartyotin S, Juntaro J, Sain M, Manuspiya H (2012) Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind Crops Prod 35:92–97CrossRefGoogle Scholar
  91. Vandamme EJ, De Baets S, Vanbaelen A, Joris K, De Wulf P (1998) Improved production of bacterial cellulose and its application potential. Polym Degrad Stab 59:93–99CrossRefGoogle Scholar
  92. Wang J, Lu X, Ng PF, Lee K, Fei B, Xin JH, Wu J (2015) Polyethylenimine coated bacterial cellulose nanofiber membrane and application as adsorbent and catalyst. J Colloid Interface Sci 440:32–38CrossRefGoogle Scholar
  93. Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200CrossRefGoogle Scholar
  94. Wu YB, Yu SH, Mi FL, Wu CW, Shyu SS, Peng CK, Chao AC (2004) Preparation and characterization on mechanical and antibacterial properties of chitosan/cellulose blends. Carbohydr Polym 57(4):435–440CrossRefGoogle Scholar
  95. Wu J, Zheng Y, Song W, Luan J, Wen X, Wu Z, Chen X, Wang Q, Guo S (2014) In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr Polym 102:762–771CrossRefGoogle Scholar
  96. Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryu M (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24:3141–3145CrossRefGoogle Scholar
  97. Yan Z, Chen S, Wang H, Wang B, Jiang J (2008) Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydr Polym 74:659–665CrossRefGoogle Scholar
  98. Yang G, Xie J, Hong F, Cao Z, Yang X (2012) Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: effect of fermentation carbon sources of bacterial cellulose. Carbohydr Polym 87:839–845CrossRefGoogle Scholar
  99. Yoon SH, Jin HJ, Kook MC, Pyun YR (2006) Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules 7:1280–1284CrossRefGoogle Scholar
  100. Zahan KA, Pa’e N, Muhamad II (2014) Process parameter for fermentation in rotary discs reactor for optimum microbial cellulose production using response surface methodology. Bioresources 9(2):1858–1872Google Scholar
  101. Zhang Z, Zhang J, Zhao X, Yang F (2015) Core-sheath structured porous carbon nanofiber composite anode material derived from bacterial cellulose/polypyrrole as an anode for sodium-ion batteries. Carbon 95:552–559CrossRefGoogle Scholar
  102. Zhang F, Tang Y, Yang Y, Zhang X, Lee CS (2016) In-situ assembly of three-dimensional MoS2 nanoleaves/carbon nanofiber composites derived from bacterial cellulose as flexible and binder-free anodes for enhanced lithium-ion batteries. Electrochim Acta 211:404–410CrossRefGoogle Scholar
  103. Zhou T, Chen D, Jiu J, Nge TT (2013) Electrically conductive bacterial cellulose composite membranes produced by the incorporation of graphite nanoplatelets in pristine bacterial cellulose membranes. Express Polym Lett 7:756–766CrossRefGoogle Scholar
  104. Zhu H, Jia S, Wan T, Jia Y, Yang H, Li J, Yan L, Zhong C (2011) Biosynthesis of spherical Fe3O4/Bacterial cellulose nanocomposites as adsorbents for heavy metal ions. Carbohydr Polym 86:1558–1564CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • N. Pa’e
    • 1
  • I. I. Muhamad
    • 1
    • 2
    Email author
  • Z. Hashim
    • 1
  • A. H. M. Yusof
    • 1
  1. 1.Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of EngineeringUniversiti Teknologi MalaysiaJohor BahruMalaysia
  2. 2.Cardiac Biomaterials Cluster, IJN-UTM Cardiovascular Engineering Center, FBME, UTMJohor BahruMalaysia

Personalised recommendations