Renewable Resource-Based Polymers

  • Ahmed Sharif
  • Md Enamul HoqueEmail author


There are growing concerns that a significant reliance on fossil resources is not sustainable for the production of polymers. The all-out transition toward renewable resources for polymer production is inevitable. Polymers from renewable resources include cellulose, starch, chitosan, lignin, proteins, oils, common commodity polymers (e.g., polyethylene, polyethylene terephthalate), and microbial poly(ester)s. Fundamental research in the production, modification, property enhancement, and new applications of these materials is an important undertaking. In this chapter, existing advances in the exploitation of renewable resources to produce polymers are summarized.


Renewable Polymer Fossil Cellulose Starch Chitosan Lignin Proteins 


  1. Adler E (1977) Lignin chemistry—past, present and future. Wood Sci Technol 11(3):169–218CrossRefGoogle Scholar
  2. Akbari A, Majumder M, Tehrani A (2015) Polylactic acid (PLA) carbon nanotube nanocomposites. In: Handbook of polymer nanocomposites. Processing, performance and application. Springer, Berlin, pp 283–297Google Scholar
  3. Albertsson AC, Varma IK (2003) Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules 4(6):1466–1486CrossRefGoogle Scholar
  4. Allen SD (2014) U.S. Patent No. 8,748,555. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  5. Araki T, Hayase S (1979) Biodegradability of synthetic β-substituted poly-β-esters. J Polym Sci Polym Chem Ed 17(6):1877–1881CrossRefGoogle Scholar
  6. Arof L, Subban RHY, Radhakrishna S (1995) In: Prasad PN (ed) Polymer and other advanced materials: emerging technologies and business. p 539Google Scholar
  7. Asha AB, Sharif A, Hoque ME (2017) Interface interaction of jute fiber reinforced PLA biocomposites for potential applications. In: Jawaid M, Salit MS, Alothman OY (eds) Green biocomposites: design and applications. Springer, SwitzerlandCrossRefGoogle Scholar
  8. Atkins E (1985) Conformations in polysaccharides and complex carbohydrates. J Biosci 8(1–2):375–387CrossRefGoogle Scholar
  9. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864CrossRefGoogle Scholar
  10. Avinc O, Khoddami A (2010) Overview of poly(lactic acid)(PLA) fibre. Fibre Chem 42(1):68–78CrossRefGoogle Scholar
  11. Ayhllon-Meixueiro F, Tropini V, Silvestre F (2001) Fatty esterification of plant proteins. In: Biorelated polymers. Springer, Boston, pp 231–236CrossRefGoogle Scholar
  12. Babu RP, O’connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2(1):8CrossRefGoogle Scholar
  13. Baeumler A, Ijjasz-Vasquez E, Mehndiratta S (2012) Sustainable low-carbon cities in China: why it matters and what can be done. In: Sustainable low-carbon city development in China, pp 39–67Google Scholar
  14. Barham PJ, Keller A (1986) The relationship between microstructure and mode of fracture in polyhydroxybutyrate. J Polym Sci Part B Polym Phys 24(1):69–77CrossRefGoogle Scholar
  15. Basta N (1984) Biopolymers challenge petrochemicals. High Technol 4(2):66–70Google Scholar
  16. Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Improved utilisation of renewable resources: new important derivatives of glycerol. Green Chem 10(1):13–30CrossRefGoogle Scholar
  17. Bemiller JN (1997) Starch modification: challenges and prospects. Starch-Stärke 49(4):127–131CrossRefGoogle Scholar
  18. Black M, Rawlins JW (2009) Thiolene UV-curable coatings using vegetable oil macromonomers. Eur Polym J 45(5):1433–1441CrossRefGoogle Scholar
  19. Blackwell J (1982) The macromolecular organization of cellulose and chitin. In: Cellulose and other natural polymer systems. Springer, Boston, pp 403–428CrossRefGoogle Scholar
  20. Botello-Álvarez JE, Rivas-García P, Fausto-Castro L, Estrada-Baltazar A, Gomez-Gonzalez R (2018) Informal collection, recycling and export of valuable waste as transcendent factor in the municipal solid waste management: a Latin-American reality. J Clean Prod 182:485–495CrossRefGoogle Scholar
  21. Braunegg G (2002) Sustainable poly(hydroxyalkanoate)(PHA) production. In: Degradable polymers. Springer, Dordrecht, pp 235–293CrossRefGoogle Scholar
  22. Braunegg G, Lefebvre G, Genser KF (1998) Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J Biotechnol 65(2–3):127–161CrossRefGoogle Scholar
  23. Browning WC (1955) Lignosulfonate stabilized emulsions in oil well drilling fluids. J Petrol Technol 7(06):9–15CrossRefGoogle Scholar
  24. Bruijnincx PC, Rinaldi R, Weckhuysen BM (2015) Unlocking the potential of a sleeping giant: lignins as sustainable raw materials for renewable fuels, chemicals and materials. Green Chem 17(11):4860–4861CrossRefGoogle Scholar
  25. Byrne CM, Allen SD, Lobkovsky EB, Coates GW (2004) Alternating copolymerization of limonene oxide and carbon dioxide. J Am Chem Soc 126(37):11404–11405CrossRefGoogle Scholar
  26. Calvo-Flores FG, Dobado JA (2010) Lignin as renewable raw material. Chemsuschem 3(11):1227–1235CrossRefGoogle Scholar
  27. Carrott PJM, Carrott MR (2007) Lignin–from natural adsorbent to activated carbon: a review. Biores Technol 98(12):2301–2312CrossRefGoogle Scholar
  28. Chauhan GS, Mahajan S, Guleria LK (2000) Polymers from renewable resources: sorption of Cu2+ ions by cellulose graft copolymers. Desalination 130(1):85–88CrossRefGoogle Scholar
  29. Chen G, Li S, Jiao F, Yuan Q (2007) Catalytic dehydration of bioethanol to ethylene over TiO2/γ-Al2O3 catalysts in microchannel reactors. Catal Today 125(1–2):111–119CrossRefGoogle Scholar
  30. Cheng Y, Deng S, Chen P, Ruan R (2009) Polylactic acid (PLA) synthesis and modifications: a review. Front Chem China 4(3):259–264CrossRefGoogle Scholar
  31. Chiellini E, Chiellini F, Cinelli P (2002a) Polymers from renewable resources. In: Degradable polymers. Springer, Dordrecht, pp 163–233CrossRefGoogle Scholar
  32. Chiellini E, Cinelli P, Antone SD, Ilieva VI (2002b) Environmentally degradable polymeric materials (EDPM) in agricultural applications—an overview. Polimery 47(7–8):538–544CrossRefGoogle Scholar
  33. Chodak I (2002) Polyhydroxyalkanoates: properties and modification for high volume applications. In: Degradable polymers. Springer, Dordrecht, pp 295–319CrossRefGoogle Scholar
  34. Chodak I (2008) Polyhydroxyalkanoates: origin, properties and applications. In: Monomers, polymers and composites from renewable resources. pp 451–477CrossRefGoogle Scholar
  35. Choi J, Lee SY (1999) Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl Microbiol Biotechnol 51(1):13–21CrossRefGoogle Scholar
  36. Coates GW, Moore DR (2004) Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: discovery, reactivity, optimization, and mechanism. Angew Chem Int Ed 43(48):6618–6639CrossRefGoogle Scholar
  37. Cohen CT, Chu T, Coates GW (2005) Cobalt catalysts for the alternating copolymerization of propylene oxide and carbon dioxide: combining high activity and selectivity. J Am Chem Soc 127(31):10869–10878CrossRefGoogle Scholar
  38. Cuq B, Gontard N, Guilbert S (1998) Proteins as agricultural polymers for packaging production. Cereal Chem 75(1):1–9CrossRefGoogle Scholar
  39. Dalev P, Vassileva E, Mark JE, Fakirov S (1998) Enzymatic degradation of formaldehyde-crosslinked gelatin. Biotechnol Tech 12(12):889–892CrossRefGoogle Scholar
  40. Das O, Sarmah AK, Bhattacharyya D (2015) A sustainable and resilient approach through biochar addition in wood polymer composites. Sci Total Environ 512:326–336CrossRefGoogle Scholar
  41. De Carvalho CC, da Fonseca MMR (2006) Biotransformation of terpenes. Biotechnol Adv 24(2):134–142CrossRefGoogle Scholar
  42. de Espinosa LM, Meier MA (2011) Plant oils: the perfect renewable resource for polymer science?! Eur Polym J 47(5):837–852CrossRefGoogle Scholar
  43. De Graaf LA, Kolster P (1998) Industrial proteins as a green alternative for ‘petro’ polymers: potentials and limitations. In: Macromolecular symposia, vol 127, no 1. Hüthig & Wepf Verlag, Basel, pp 51–58Google Scholar
  44. De Graaf LA, Kolster P, Vereijken JM (1998) Modification of wheat gluten for non-food applications. Plant proteins from European crops. Springer, Berlin, pp 335–339CrossRefGoogle Scholar
  45. Doane WM, Swanson CL, Fanta GF (1992) Emerging polymeric materials based on starch. In: Rowell RM, Scultz TP, Narayan R (eds) Emerging technologies for materials and chemicals from biomass, ACS symposium series (USA) 476, pp 197–230Google Scholar
  46. Doi Y, Kunioka M, Nakamura Y, Soga K (1987) Biosynthesis of copolyesters in Alcaligenes eutrophus H16 from carbon-13 labeled acetate and propionate. Macromolecules 20(12):2988–2991CrossRefGoogle Scholar
  47. dos Santos Abreu H, do Nascimento AM, Maria MA (2007) Lignin structure and wood properties. Wood Fiber Sci 31(4):426–433Google Scholar
  48. Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12(23):1841–1846CrossRefGoogle Scholar
  49. Dufresne A (2017) Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter GmbH & Co KG, BerlinCrossRefGoogle Scholar
  50. Einchhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315CrossRefGoogle Scholar
  51. Einchhorn SJ, Dufresne A, Aranguren MM, Capadona JR, Rowan SJ, Weder C et al (2010) Review: current international research into cellulose nanofibres and composites. J Mater Sci 45:1–33Google Scholar
  52. Erman WF (1985) In: Gassman PG (ed) Chemistry of the monoterpenes, Part A. Studies in organic chemistry. Marcel Dekker, New York, pp 929–1033Google Scholar
  53. Feughelman M (2002) Natural protein fibers. J Appl Polym Sci 83(3):489–507CrossRefGoogle Scholar
  54. Firdaus M, Meier MA (2013) Renewable polyamides and polyurethanes derived from limonene. Green Chem 15(2):370–380CrossRefGoogle Scholar
  55. Focher B, Marzetti A, Crescenzi V (eds) (1991) Steam explosion techniques: fundamentals and industrial applications. In: Proceedings of the international workshop on steam explosion techniques: fundamentals and industrial applications, Milan, Italy, 20–21 Oct 1988. CRC Press, Boca RatonGoogle Scholar
  56. Follain N, Chappey C, Dargent E, Chivrac F, Crétois R, Marais S (2014) Structure and barrier properties of biodegradable polyhydroxyalkanoate films. J Phys Chem C 118(12):6165–6177CrossRefGoogle Scholar
  57. French AD, Bertoniere NR, Battista OA, Cuculo JA, Gray DG (1993) Cellulose, Chapter in: Kirk-Othmer encyclopedia of chemical technology, 4th edn., vol. 5. Wiley, New York, pp 476–496Google Scholar
  58. Gagnon KD, Lenz RW, Farris RJ, Fuller RC (1992) The mechanical properties of a thermoplastic elastomer produced by the bacterium Pseudomonas oleovorans. Rubber Chem Technol 65(4):761–777CrossRefGoogle Scholar
  59. Gandini A (2010) Furans as offspring of sugars and polysaccharides and progenitors of a family of remarkable polymers: a review of recent progress. Polym Chem 1(3):245–251CrossRefGoogle Scholar
  60. Gandini A (2011a) Furan monomers and their polymers: synthesis, properties and applications. In: Biopolymers—new materials for sustainable films and coatings, pp 179–209CrossRefGoogle Scholar
  61. Gandini A (2011b) The irruption of polymers from renewable resources on the scene of macromolecular science and technology. Green Chem 13(5):1061–1083CrossRefGoogle Scholar
  62. Gandini A, Belgacem MN (1997) Furans in polymer chemistry. Prog Polym Sci 22(6):1203–1379CrossRefGoogle Scholar
  63. Gandini A, Belgacem MN (2013) The state of the art of polymers from renewable resources. In: Handbook of biopolymers and biodegradable plastics, pp 71–85CrossRefGoogle Scholar
  64. Gandini A, Lacerda TM (2015) From monomers to polymers from renewable resources: recent advances. Prog Polym Sci 48:1–39CrossRefGoogle Scholar
  65. Goheen DH, Royt CR (1981) Lignin. Kirk-othmer encyclopedia of polymer science and technology, vol 14, 3rd edn. Wiley, New York, pp 294–312Google Scholar
  66. Gorochovceva N, Makuška R (2004) Synthesis and study of water-soluble chitosan-O-poly(ethylene glycol) graft copolymers. Eur Polym J 40(4):685–691CrossRefGoogle Scholar
  67. Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43(5):1519–1542MathSciNetCrossRefGoogle Scholar
  68. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRefGoogle Scholar
  69. Han Y, Yuan L, Li G, Huang L, Qin T, Chu F, Tang C (2016) Renewable polymers from lignin via copper-free thermal click chemistry. Polymer 83:92–100CrossRefGoogle Scholar
  70. Hoenich NA, Stamp S (2000) Clinical investigation of the role of membrane structure on blood contact and solute transport characteristics of a cellulose membrane. Biomaterials 21(3):317–324CrossRefGoogle Scholar
  71. Hoque ME, Gee LP (2013) Biodiesel from plant resources—sustainable solution to ever increasing fuel oil demands. J Sustain Bioenergy Syst 3:163–170CrossRefGoogle Scholar
  72. Hoque ME, Ye TJ, Yong LC, Dahlan KM (2013) Sago starch-mixed low-density polyethylene (LDPE) biodegradable polymer: synthesis and characterization. J Mater Article ID 365380, 7 pages. Scholar
  73. Hoque ME, Khan AM, Islam MS, Asim M, Jawaid M, Othman OA (2016) The effect of natural degradation on the mechanical and morphological properties of tropical woods. Cellul Chem Technol 50(7–8):723–730Google Scholar
  74. Hoque ME, Daei JMG, Khalid M (2018) Next generation biomimetic bone tissue engineering matrix from poly(l-lactic acid) PLA/calcium carbonate composites doped with silver nanoparticles. Curr Anal Chem 14(3):268–277CrossRefGoogle Scholar
  75. Hou XL, Cheung HY, Hon TY, Kwan PL, Lo TH, Tong SY, Wong HN (1998) Regioselective syntheses of substituted furans. Tetrahedron 54(10):1955–2020CrossRefGoogle Scholar
  76. Hutmacher DW, Hoque ME, Wong YS (2008) Design, fabrication and physical characterization of scaffolds made from biodegradable synthetic polymers in combination with RP systems based on melt extrusion. In: Bidanda B, Bartolo P (eds) Virtual prototyping & bio manufacturing in medical applications. Springer, USAGoogle Scholar
  77. Hwang Y, Jung J, Ree M, Kim H (2003) Terpolymerization of CO2 with propylene oxide and ε-caprolactone using zinc glutarate catalyst. Macromolecules 36(22):8210–8212CrossRefGoogle Scholar
  78. Imam SH, Mao L, Chen L, Greene RV (1999) Wood adhesive from crosslinked poly(vinyl alcohol) and partially gelatinized starch: preparation and properties. Starch-Stärke 51(6):225–229CrossRefGoogle Scholar
  79. Imre B, Pukánszky B (2015) From natural resources to functional polymeric biomaterials. Eur Polym J 68:481–487CrossRefGoogle Scholar
  80. Jagur-Grodzinski J (1999) Biomedical application of functional polymers. React Funct Polym 39(2):99–138CrossRefGoogle Scholar
  81. Jeromenok J, Böhlmann W, Antonietti M, Weber J (2011) Intrinsically microporous polyesters from betulin-toward renewable materials for gas separation made from birch bark. Macromol Rapid Commun 32(22):1846–1851CrossRefGoogle Scholar
  82. Jiang L, Li Y, Wang X, Zhang L, Wen J, Gong M (2008) Preparation and properties of nano-hydroxyapatite/chitosan/carboxymethyl cellulose composite scaffold. Carbohydr Polym 74(3):680–684CrossRefGoogle Scholar
  83. Jyothi AN (2010) Starch graft copolymers: novel applications in industry. Compos Interfaces 17(2–3):165–174CrossRefGoogle Scholar
  84. Kadla JF, Kubo S, Gilbert RD, Venditti RA (2002) Lignin-based carbon fibers. In: Chemical modification, properties, and usage of lignin. Springer, Boston, MA, pp 121–137CrossRefGoogle Scholar
  85. Kanagaratnam S, Hoque ME, Sahri MM, Spowage A (2013) Investigating the effect of deforming temperature on the oil-binding capacity of palm oil based shortening. J Food Eng 118(1):90–99CrossRefGoogle Scholar
  86. Kauffman GB (1993) Rayon: the first semi-synthetic fiber product. J Chem Educ 70(11):887CrossRefGoogle Scholar
  87. Kember MR, Buchard A, Williams CK (2011) Catalysts for CO2/epoxide copolymerisation. Chem Commun 47(1):141–163CrossRefGoogle Scholar
  88. Kester J (1986) Edible films and coatings: a review. Food Technol 40(12):47–59Google Scholar
  89. Ketabchi MR, Khalid M, Hoque ME, Ratnam CT, Walvekar R (2015) Eco-friendly and cost-effective isolation of cellulose microfibres and nano-crystals from kenaf fibres. In: Proceedings, 13th international conference on environment, ecosystems and development (EED 2015), 23–25 Apr 2015, Kuala Lumpur, MalaysiaGoogle Scholar
  90. Ketabchi MR, Khalid M, Ratnam CT, Manicham S, Walvekar R, Hoque ME (2016) Sonosynthesis of cellulose nanoparticles (CNP) from kenaf fiber: effects of processing parameters. Fibers Polym 17(9):1352–1358CrossRefGoogle Scholar
  91. Kim G, Ree M, Kim H, Kim IJ, Kim JR, Im Lee J (2008) Biological affinity and biodegradability of poly(propylene carbonate) prepared from copolymerization of carbon dioxide with propylene oxide. Macromol Res 16(5):473–480CrossRefGoogle Scholar
  92. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466CrossRefGoogle Scholar
  93. Kobayashi S, Lu C, Hoye TR, Hillmyer MA (2009) Controlled polymerization of a cyclic diene prepared from the ring-closing metathesis of a naturally occurring monoterpene. J Am Chem Soc 131(23):7960–7961CrossRefGoogle Scholar
  94. Koutinas AA, Chatzifragkou A, Kopsahelis N, Papanikolaou S, Kookos IK (2014) Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production. Fuel 116:566–577CrossRefGoogle Scholar
  95. Kruger LH (1989) U.S. Patent No. 4,838,944. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  96. Kulkarni RK, Moore EG, Hegyeli AF, Leonard F (1971) Biodegradable poly(lactic acid) polymers. J Biomed Mater Res 5(3):169–181CrossRefGoogle Scholar
  97. Kumar S, Krishnan S, Samal SK, Mohanty S, Nayak SK (2017) Itaconic acid used as a versatile building block for the synthesis of renewable resource based resins and polyesters for future prospective: a review. Polym Int 66(10):1349–1363CrossRefGoogle Scholar
  98. Kurita K (2001) Controlled functionalization of the polysaccharide chitin. Prog Polym Sci 26(9):1921–1971CrossRefGoogle Scholar
  99. Labet M, Thielemans W, Dufresne A (2007) Polymer grafting onto starch nanocrystals. Biomacromolecules 8(9):2916–2927CrossRefGoogle Scholar
  100. Lagoa R, Murtinho D, Gil MH (1999) Membranes of cellulose derivatives as supports for immobilization of enzymes. In: Imam SH, Greene RV, Zaidi BR (eds) Biopolymers—utilizing nature’s, advanced, materials. Acs symposium series 723, ACS, Washington DC, pp 228–234CrossRefGoogle Scholar
  101. Lasprilla AJ, Martinez GA, Lunelli BH, Jardini AL, Maciel Filho R (2012) Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol Adv 30(1):321–328CrossRefGoogle Scholar
  102. Lindblad MS, Liu Y, Albertsson AC, Ranucci E, Karlsson S (2002) Polymers from renewable resources. In: Degradable aliphatic polyesters. Springer, Berlin, pp 139–161Google Scholar
  103. Lindsey JB, Tollens B (1892) Ueber Holz-Sulfitflüssigkeit und Lignin. Justus Liebigs Annalen der Chemie 267(2–3):341–366CrossRefGoogle Scholar
  104. Lligadas G, Tüzün A, Ronda JC, Galià M, Cádiz V (2014) Polybenzoxazines: new players in the bio-based polymer arena. Polym Chem 5(23):6636–6644CrossRefGoogle Scholar
  105. Lora JH, Aziz S (1985) Organosolv pulping: a versatile approach to wood refining. Tappi (United States) 68(8)Google Scholar
  106. Lora JH, Glasser WG (2002) Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. J Polym Environ 10(1–2):39–48CrossRefGoogle Scholar
  107. Luinstra GA (2008) Poly(propylene carbonate), old copolymers of propylene oxide and carbon dioxide with new interests: catalysis and material properties. Polym Rev 48(1):192–219CrossRefGoogle Scholar
  108. Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59(1–3):145–152CrossRefGoogle Scholar
  109. Mac Kinnon M, Brouwer J, Samuelsen S (2018) The role of natural gas and its infrastructure in mitigating greenhouse gas emissions, improving regional air quality, and renewable resource integration. Prog Energy Combust Sci 64:62–92. Scholar
  110. Macrae RM, Wilkinson JF (1958) The influence of culture conditions on polyhydroxybutyrate synthesis by Bacillus megaterium. In: Proceedings of the royal society of Edinburgh, vol 27. pp 73–78Google Scholar
  111. Maim CJ, Mench JW, Kendall DL, Hiatt GD (1951) Aliphatic acid esters of cellulose. Preparation by acid-chloride-pyridine procedure. Ind Eng Chem 43(3):684–688CrossRefGoogle Scholar
  112. Maisonneuve L, Lebarbé T, Grau E, Cramail H (2013) Structure–properties relationship of fatty acid-based thermoplastics as synthetic polymer mimics. Polym Chem 4(22):5472–5517CrossRefGoogle Scholar
  113. Manfredi LB, Rivero G (2012) Furan resins: synthesis, characterization and applications. Chem Phys Res J 5(1/2):45Google Scholar
  114. Marchessault RH, Rioux P, Saracovan I (1993) Direct electrostatic coating of paper. Nordic Pulp Paper Res J (Sweden) 8(1):211–216CrossRefGoogle Scholar
  115. Marschessault RH, Monasterios CJ, Morin FG, Sundararajan PR (1990) Chiral poly(β-hydroxyalkanoates): an adaptable helix influenced by the alkane side-chain. Int J Biol Macromol 12(2):158–165CrossRefGoogle Scholar
  116. Mathiasson A, Kubat DG (1994) Lignin as binder in particle boards using high frequency heating. Holz als Roh-und Werkstoff 52(1):9CrossRefGoogle Scholar
  117. Meier MA, Metzger JO, Schubert US (2007) Plant oil renewable resources as green alternatives in polymer science. Chem Soc Rev 36(11):1788–1802CrossRefGoogle Scholar
  118. Meshram MW, Patil VV, Mhaske ST, Thorat BN (2009) Graft copolymers of starch and its application in textiles. Carbohydr Polym 75(1):71–78CrossRefGoogle Scholar
  119. Miao CX, Wang JQ, He LN (2008) Catalytic processes for chemical conversion of carbon dioxide into cyclic carbonates and polycarbonates. Open Org Chem J 2(1)Google Scholar
  120. Michael FM, Khalid M, Walvekar R, Ratnam CT, Ramarad S, Siddiqui H, Hoque ME (2016) Effect of nanofillers on the physico-mechanical properties of load bearing bone implants. Mater Sci Eng C 67:792–806CrossRefGoogle Scholar
  121. Missoum K, Belgacem MN, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6(5):1745–1766CrossRefGoogle Scholar
  122. Mitomo H, Sasaoka T, Yoshii F, Makuuchi K, Saito T (1996) Radiation-induced graft polymerization of acrylic acid onto poly(3-hydroxybutyrate) and its copolymer. Sen’i Gakkaishi 52(11):623–626CrossRefGoogle Scholar
  123. Moreau C, Belgacem MN, Gandini A (2004) Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top Catal 27(1–4):11–30CrossRefGoogle Scholar
  124. Mormann W, Spitzer D (2001) Silylation of OH‐polymers by reactive extrusion. In: Macromolecular symposia, vol 176, no 1. WILEY‐VCH Verlag GmbH, Weinheim, pp 279–288CrossRefGoogle Scholar
  125. Mülhaupt R (2013) Green polymer chemistry and bio-based plastics: dreams and reality. Macromol Chem Phys 214(2):159–174CrossRefGoogle Scholar
  126. Müller AJ, Ávila M, Saenz G, Salazar J (2015) Crystallization of PLA-based materials. Poly(lactic acid) science and technology: processing, properties, additives and applications. Royal Society of Chemistry, London, pp 68–98Google Scholar
  127. Mutlu H, Kusefoglu SH (2009) Synthesis and characterization of polymers from soybean oil and p-dinitrosobenzene. J Appl Polym Sci 113(3):1925–1934CrossRefGoogle Scholar
  128. Muzzarelli RAA (1997) Human enzymatic activities related to the therapeutic administration of chitin derivatives. Cell Mol Life Sci CMLS 53(2):131–140CrossRefGoogle Scholar
  129. Nainar SMM, Begum S, Ansari MNM, Hoque ME, Aini SS, Ng MH, Ruszymah BHI (2014) Effect of compatibilizers on in vitro biocompatibility of PLA-HA bioscaffold. Bioinspired Biomimetic Nanobiomater 3(4):208–216CrossRefGoogle Scholar
  130. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8–9):762–798CrossRefGoogle Scholar
  131. Nakajima M, Atsumi K, Kifune K (1984) Development of absorbable sutures from chitin. In: Chitin, chitosan, and related enzymes. Academic Press, New York, pp 407–410CrossRefGoogle Scholar
  132. Ni J, Wang M (2002) In vitro evaluation of hydroxyapatite reinforced polyhydroxybutyrate composite. Mater Sci Eng C 20(1–2):101–109CrossRefGoogle Scholar
  133. Nilsson TY, Wagner M, Inganäs O (2015) Lignin modification for biopolymer/conjugated polymer hybrids as renewable energy storage materials. Chemsuschem 8(23):4081–4085CrossRefGoogle Scholar
  134. Northey RA (1992) In: Rowell RM, Scultz TP, Narayan R (eds) Low cost uses of lignin, in emerging technologies for materials and chemicals from biomass, ACS symposium series 476. ACS, Washington, D.C., pp l46–175Google Scholar
  135. Orts WJ, Marchessault RH, Bluhm TL, Hamer GK (1990) Observation of strain-induced β form in poly(β-hydroxyalkanoates). Macromolecules 23(26):5368–5370CrossRefGoogle Scholar
  136. Pagliaro M, Ciriminna R, Kimura H, Rossi M, Della Pina C (2007) From glycerol to value-added products. Angew Chem Int Ed 46(24):4434–4440CrossRefGoogle Scholar
  137. Pang X, Zhuang X, Tang Z, Chen X (2010) Polylactic acid (PLA): research, development and industrialization. Biotechnol J 5(11):1125–1136CrossRefGoogle Scholar
  138. Pecoraro É, Manzani D, Messaddeq Y, Ribeiro SJ (2008) Bacterial cellulose from Glucanacetobacter xylinus: preparation, properties and applications. In: Monomers, polymers and composites from renewable resources, pp 369–383CrossRefGoogle Scholar
  139. Petersen K, Nielsen PV, Bertelsen G, Lawther M, Olsen MB, Nilsson NH, Mortensen G (1999) Potential of biobased materials for food packaging. Trends Food Sci Technol 10(2):52–68CrossRefGoogle Scholar
  140. Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 82(3):233–247Google Scholar
  141. Piccolo RS, Santos F, Frollini E (1997) Sugar cane bagasse lignin in resol-type resin: alternative application for ligninphenol-formaldehyde resins. J Macromol Sci Part A 34(1):153–164CrossRefGoogle Scholar
  142. Pollak A (1952) Lignin. Kirk-Othmer encyclopedia of chemical technology, 1st edn., vol 8. Wiley, New York, pp 327–338Google Scholar
  143. Pollet E, Avérous L (2011) Production, chemistry and properties of polyhydroxyalkanoates. In: Biopolymers—new materials for sustainable films and coatings. pp 65–86CrossRefGoogle Scholar
  144. Ramsay JA, Ramsay BA (1990) Poly-beta-hydroxyalkanoic acids(PHAs): unique, microbially produced thermoplastics. Appl Phycol Forum 7(3):1–5Google Scholar
  145. Reinhart CT, Peppas NA (1984) Solute diffusion in swollen membranes. Part II. Influence of crosslinking on diffusive properties. J Membr Sci 18:227–239CrossRefGoogle Scholar
  146. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632CrossRefGoogle Scholar
  147. Rudall KM, Kenchington W (1973) The chitin system. Biol Rev 48(4):597–633CrossRefGoogle Scholar
  148. Sagar AD, Merrill EW (1995) Properties of fatty-acid esters of starch. J Appl Polym Sci 58(9):1647–1656CrossRefGoogle Scholar
  149. Sahoo D, Nayak PL (2011) Chitosan: the most valuable derivative of chitin. Biopolym Biomed Environ Appl 129–166Google Scholar
  150. Sahoo S, Mohanty S, Nayak SK (2018) Biobased polyurethane adhesive over petroleum based adhesive: use of renewable resource. J Macromol Sci Part A 55(1):36–48CrossRefGoogle Scholar
  151. Saikia A, Karak N (2017) Renewable resource based thermostable tough hyperbranched epoxy thermosets as sustainable materials. Polym Degrad Stab 135:8–17CrossRefGoogle Scholar
  152. Shi B, Topolkaraev V, Wang J (2011) Biopolymers, processing, and biodegradation. In: Renewable and sustainable polymers. American Chemical Society, Washington, pp 117–132Google Scholar
  153. Shirashi N (1992) Liquefaction of lignocellulosics in organic solvents and its applications. In: Rowell RM, Scultz TP, Narayan R (eds) Emerging technologies for materials and chemicals from biomass, ACS symposium series 476, pp 136–145Google Scholar
  154. Silvestre AJ, Gandini A (2008) Terpenes: major sources, properties and applications. In: Monomers, polymers and composites from renewable resources, pp 17–38CrossRefGoogle Scholar
  155. Simon J, Müller HP, Koch R, Müller V (1998) Thermoplastic and biodegradable polymers of cellulose. Polym Degrad Stab 59(1–3):107–115CrossRefGoogle Scholar
  156. Singh DK, Ray AR (2000) Biomedical applications of chitin, chitosan, and their derivatives. J Macromol Sci Part C Polym Rev 40(1):69–83CrossRefGoogle Scholar
  157. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRefGoogle Scholar
  158. Södergård A, Stolt M (2002) Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci 27(6):1123–1163CrossRefGoogle Scholar
  159. Sutton AD, Waldie FD, Wu R, Schlaf M, Louis A III, Gordon JC (2013) The hydrodeoxygenation of bioderived furans into alkanes. Nat Chem 5(5):428CrossRefGoogle Scholar
  160. Taherimehr M, Pescarmona PP (2014) Green polycarbonates prepared by the copolymerization of CO2 with epoxides. J Appl Polym Sci 131(21)Google Scholar
  161. Tamura H (2004) Destruction of rigid crystalline structure to prepare chitin solution. Adv Chitin Sci 7:84–87Google Scholar
  162. Tessler MM, Billmers RL (1996) Preparation of starch esters. J Environ Polym Degrad 4(2):85–89CrossRefGoogle Scholar
  163. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2(5):1072–1092CrossRefGoogle Scholar
  164. Tharanathan RN (2005) Starch—value addition by modification. Crit Rev Food Sci Nutr 45(5):371–384CrossRefGoogle Scholar
  165. Tharanathan RN, Kittur FS (2003) Chitin—the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr 43(1):61–87CrossRefGoogle Scholar
  166. Thielemans W, Wool RP (2005) Lignin esters for use in unsaturated thermosets: lignin modification and solubility modeling. Biomacromolecules 6(4):1895–1905CrossRefGoogle Scholar
  167. Thoma JA, Stewart L (1965) In: Whistler RL, Pashall EF (eds) Starch: chemistry and technology, vol 1. Academic Press, New York, pp 209–249Google Scholar
  168. Tong H, Yao SN (1997) Study of the microstructure and the microtopography for shell of crab and lobster. J Anal Sci 13(3):206–209Google Scholar
  169. Törmälä P, Vasenius J, Vainionpää S, Laiho J, Pohjonen T, Rokkanen P (1991) Ultra-high-strength absorbable self-reinforced polyglycolide (SR-PGA) composite rods for internal fixation of bone fractures: in vitro and in vivo study. J Biomed Mater Res 25(1):1–22CrossRefGoogle Scholar
  170. Tsanaktsis V, Terzopoulou Z, Exarhopoulos S, Bikiaris DN, Achilias DS, Papageorgiou DG, Papageorgiou GZ (2015) Sustainable, eco-friendly polyesters synthesized from renewable resources: preparation and thermal characteristics of poly(dimethyl-propylene furanoate). Polym Chem 6(48):8284–8296CrossRefGoogle Scholar
  171. Tuck CO, Pérez E, Horváth IT, Sheldon RA, Poliakoff M (2012) Valorization of biomass: deriving more value from waste. Science 337(6095):695–699CrossRefGoogle Scholar
  172. Van de Velde K, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Testing 21(4):433–442CrossRefGoogle Scholar
  173. Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr Opin Plant Biol 11(3):278–285CrossRefGoogle Scholar
  174. Vert M (2001) Biopolymers and artificial biopolymers in biomedical applications, an overview. In: Biorelated polymers. Springer, Boston, MA, pp 63–79CrossRefGoogle Scholar
  175. Vestapen B, Pawa F, Dortman B, Bagastyo A, Pratono AH, Rahmani P, Zurbrugg C (2017) Municipal solid waste management: market-driven upcycling of urban solid waste in Indonesia. In: Mahadwartha PA, Pratono AH, Verstappen BM, Zurbrügg C (eds) Generating value from organic waste (pp. 1–5), Master of Management Program, Faculty of Business and Economics, Universitas Surabaya, Surabaya, IndonesiaGoogle Scholar
  176. Vikso-Nielsen A, Andersen C, Pedersen S, Hjort C (2009) U.S. Patent No. 7,618,795. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  177. Wang R, Schuman TP (2013) Vegetable oil-derived epoxy monomers and polymer blends: a comparative study with review. Express Polym Lett 7(3):272–292CrossRefGoogle Scholar
  178. Wang J, Manley RSJ, Feldman D (1992) Synthetic polymer-lignin copolymers and blends. Prog Polym Sci 17(4):611–646CrossRefGoogle Scholar
  179. Wetzel S, Duchesne LC, Laporte MF (2006) Bioproducts from Canada’s forests: new partnerships in the bioeconomy. Springer Science & Business Media, BerlinGoogle Scholar
  180. Williams CK, Hillmyer MA (2008) Polymers from renewable resources: a perspective for a special issue of polymer reviews. Polym Rev 48(1):1–10CrossRefGoogle Scholar
  181. Wing RE, Willett JL (1997) Water soluble oxidized starches by peroxide reactive extrusion. Ind Crops Prod 7(1):45–52CrossRefGoogle Scholar
  182. Wing RE, Willett JL (1999) In Imam SH, Greene RY, Zaidi BR (eds) Thermochemical processes for derivatization of starches with different amylose content in biopolymers—utilizing nature’s, advanced, materials. ACS symposium series 723, ACS, Washington DC, pp 55–64Google Scholar
  183. Wu CS (2015) Renewable resource-based green composites of surface-treated spent coffee grounds and polylactide: characterisation and biodegradability. Polym Degrad Stab 121:51–59CrossRefGoogle Scholar
  184. Yamane H, Terao K, Hiki S, Kimura Y (2001) Mechanical properties and higher order structure of bacterial homo poly(3-hydroxybutyrate) melt spun fibers. Polymer 42(7):3241–3248CrossRefGoogle Scholar
  185. Yan N, Chen X (2015) Don’t waste seafood waste: turning cast-off shells into nitrogen-rich chemicals would benefit economies and the environment. Nature 524(7564):155–158CrossRefGoogle Scholar
  186. Yannas IV (1972) Collagen and gelatin in the solid state. J Macromol Sci Rev Macromol Chem 7(1):49–106CrossRefGoogle Scholar
  187. Yannas IV, Burke JF, Orgill DP, Skrabut EM (1982) Wound tissue can utilize a polymeric template to synthesize a functional extension of skin. Science 215(4529):174–176CrossRefGoogle Scholar
  188. Yilmaz M, Kusefoğlu SH (2005) Gelation of soybean oil with polybutadiene. J Appl Polym Sci 96(6):2240–2246CrossRefGoogle Scholar
  189. Yousefi AM, Hoque ME, Prasad RGSV, Uth N (2015) Current strategies in multiphasic scaffold design for osteochondral tissue engineering: a review. J Biomed Mater Res Part A 103(7):2460–2481CrossRefGoogle Scholar
  190. Yuan Y, Ruckenstein E (1998) Miscibility and transesterification of phenoxy with biodegradable poly(3-hydroxybutyrate). Polymer 39(10):1893–1897CrossRefGoogle Scholar
  191. Zdrahala RJ (1997) Thermoplastic starch revisited. Structure/property relationship for “dialed‐in” biodegradability. In: Macromolecular symposia, vol 123, no 1. Hüthig & Wepf Verlag, Basel, pp 113–121CrossRefGoogle Scholar
  192. Zhang MSY (2016) Low-carbon indicator system–sino: evaluating low-carbon city development level in China, Doctoral dissertation, University of Duisburg-EssenGoogle Scholar
  193. Zhu Y, Romain C, Williams CK (2016) Sustainable polymers from renewable resources. Nature 540(7633):354CrossRefGoogle Scholar
  194. Zia KM, Noreen A, Zuber M, Tabasum S, Mujahid M (2016) Recent developments and future prospects on bio-based polyesters derived from renewable resources: a review. Int J Biol Macromol 82:1028–1040CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Materials and Metallurgical EngineeringBangladesh University of Engineering and Technology (BUET)DhakaBangladesh
  2. 2.Department of Biomedical EngineeringMilitary Institute of Science and Technology (MIST)DhakaBangladesh

Personalised recommendations