Circuits for Electronic-Photonic Integration

  • Horst ZimmermannEmail author
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 13)


In this chapter newest research on three-dimensional integration is described. Three promising methods for 3D integration of using copper micro pillars, interwafer connects, and through-silicon vias are introduced. The application of these 3D-integration techniques in the integration of photonic chips on top of electronic chips is described subsequently. Four application examples, a multi-node optical switch, a transceiver, a sensor for optical tomography, and a sensor for 3D microimaging are explained in detail from system architecture down to the transistor level.


  1. 1.
    F. Testa, C.J. Oton, C. Kopp, J.-M. Lee, R. Ortuno, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J.A. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G.B. Preve, N. Zecevic, C.L. Manganelli, C. Castellan, G. Pares, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F.D. Pasquale, S. Stefano, Design and implementation of an integrated reconfigurable silicon photonics switch matrix in IRIS project. IEEE J. Sel. Top. Quantum Electron. 22(6), 3600314 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    G. Parès, A. Attard, F. Dosseul, A. N’Hari, O. Boillon, L. Toffanin, G. Klug, G. Simon, Development of an ultra thin die-to-wafer flip chip stacking process for 2.5D integration, in Proceedings of the 46th Annual International Symposium on Microelectron (2013), pp. 516–522Google Scholar
  3. 3.
    A.W. Topol, B.K. Furman, K.W. Guarini, L. Shi, G.M. Cohen, G.F. Walker, Enabling technologies for wafer-level bonding of 3D MEMS and integrated circuit structures, in Proceedings of the 54th Electronic Components and Technology Conference, vol. 1 (2004), pp. 931–938Google Scholar
  4. 4.
    V. Suntharalingam, R. Berger, J.A. Burns, C.K. Chen, C.L. Keast, J.M. Knecht, R.D. Lambert, K.L. Newcomb, D.M. O’ Mara, D.D. Rathman, D.C. Shaver, A.M. Soares, C.N. Stevenson, B.M. Tyrrell, K. Warner, B.D. Wheeler, D.-R.W. Yost, D.J. Young, Megapixel CMOS image sensor fabricated in three-dimensional integrated circuit technology, in Proceedings of the IEEE International Solid-State Circuits Conference (2005), pp. 356–357Google Scholar
  5. 5.
    C.L. Chen, D.-R. Yost, J.M. Knecht, J. Wey, D.C. Chapman, D.C. Oakley, A.M. Soares, L.J. Mahoney, J.P. Donnelly, C.K. Chen, V. Suntharalingam, R. Berger, W. Hu, B.D. Wheeler, C.L. Keast, D.C. Shaver, Wafer-scale 3D integration of InGaAs photodiode arrays with Si readout circuits by oxide bonding and through-oxide vias. Microelectron. Eng. 88(1), 131–134 (2011)CrossRefGoogle Scholar
  6. 6.
    N. Vokic, P. Brandl, K. Schneider-Hornstein, B. Goll, H. Zimmermann, 10 Gb/s switchable binary/PAM-4 receiver and ring modulator driver for 3-D optoelectronic integration. IEEE J. Sel. Top. Quantum Electron. 22(6), 6100309 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    M. Smith, E. Stern, Methods of making thru-connections in semiconductor wafers, US Patent 3,343,256 (1967)Google Scholar
  8. 8.
    J.H. Lau, C.K. Lee, C.S. Premachandran, A. Aibin, Advanced MEMS Packaging (McGraw-Hill, New York, NY, 2010)Google Scholar
  9. 9.
    K. Johguchi, T. Hatanaka, K. Ishida, T. Yasufuku, M. Takamiya, T. Sakurai, K. Takeuchi, Through-silicon via design for a 3-D solid-state drive system with boost converter in a package. IEEE Trans. Compon. Packag. Manuf. Technol. 1(2), 269–277 (2011)CrossRefGoogle Scholar
  10. 10.
    A. Polzer, W. Gaberl, R. Swobodal, H. Zimmermann, J.-M. Fedeli, L. Vivien, A 10Gb/s transimpedance amplifier for hybrid integration of a Ge PIN waveguide photodiode. Proc. SPIE 7719, 1N1–1N9 (2010)Google Scholar
  11. 11.
    J.M. Pavia, M. Scandini, S. Lindner, M. Wolf, E. Charbon, A 1 \(\times \) 400 backside-illuminated SPAD sensor with 49.7 ps resolution, 30 pJ/sample TDCs fabricated in 3D CMOS technology for near-infrared optical tomography. IEEE J. Solid-State Circuits 50(10), 2406–2418 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    S. Mandai, M.W. Fishburn, Y. Maruyama, E. Charbon, A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology. Opt. Express 20(6), 5849–5857 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    F. Testa, L. Pavesi, Optical Switching in Next Generation Data Centers (Springer, Cham, Switzerland, 2018)Google Scholar
  14. 14.
    P. Dainesi, A.M. Ionescu, L. Thevenaz, K. Banerjee, M.J. Declercq, P. Robert, P. Renaud, P. Fluckiger, C. Hibert, G.A. Racine, 3-D integrable optoelectronic device for telecommunications ICs, in Proceedings of the IEEE International Solid-State Circuits Conference, vol. 473 (2002), pp. 360–361Google Scholar
  15. 15.
    R.T. Chen et al., A high-speed low-voltage stress-induced micromachined 2 \(\times \) 2 optical switch. IEEE Photonics Technol. Lett. 11, 1396–1398 (1999)Google Scholar
  16. 16.
    N. Zecevic, M. Hofbauer, H. Zimmermann, Integrated pulsewidth modulation control for a scalable optical switch matrix. IEEE Photonics J. 7(6), 7803007 (2015)CrossRefGoogle Scholar
  17. 17.
    P. Pintus, P. Contu, N. Andriolli, A. D’Errico, F.D. Pasquale, F. Testa, Analysis and design of microring-based switching elements in a silicon photonic integrated transponder aggregator. J. Lightwave Technol. 31(24), 3943–3955 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    R. Enne, M. Hofbauer, N. Zecevic, B. Goll, H. Zimmermann, Integrated analogue-digital control circuit for photonic switch matrices. IET Electron. Lett. 52(12), 1045–1047 (2016)CrossRefGoogle Scholar
  19. 19.
    R.J. Baker, CMOS Circuit Design, Layout, and Simulation (Wiley, Hoboken, New Jersey, 2010)CrossRefGoogle Scholar
  20. 20.
    N. Zecevic, M. Hofbauerl, B. Goll, H. Zimmermann, S. Tondini, A. Chalyan, G. Fontana, L. Pavesi, F. Testa, S. Stracca, A. Bianchi, C. Manganelli, P. Velha, P. Pintus, C. Oton, C. Kopp, L. Adelmini, O. Lemonnier, G. Pares, G. Chiaretti, A. Serrano, J.A. Ayucar, G.B. Preve, M.-S. Kim, J.M. Lee, A 3D photonic-electronic integrated transponder aggregator with 48 \(\times \) 16 heater control cells. IEEE Photonics Technol. Lett. 30(8), 681–684 (2018)Google Scholar
  21. 21.
    Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    C. Li, R. Bai, A. Shafik, E.Z. Tabasy, G. Tang, C. Ma, C.-H. Chen, Z. Peng, M. Fiorentino, P. Chiang, S. Palermo, A ring-resonator-based silicon photonics transceiver with bias-based wavelength stabilization and adaptive-power-sensitivity receiver, in Proceedings of the IEEE International Solid-State Circuits Conference (2013), pp. 124–125Google Scholar
  23. 23.
    J.F. Buckwalter, X. Zheng, G. Li, K. Raj, A.V. Krishnamoorthy, A monolithic 25-Gb/s transceiver with photonic ring modulators and Ge detectors in a 130-nm CMOS SOI process. IEEE J. Solid-State Circuits 47(6), 1309–1322 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    F.Y. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H.F. Moghadam, X. Zheng, J.E. Cunningham, A.V. Krishnamoorthy, E. Alon, R. Ho, 10-Gbps, 5.3 mW optical transmitter and receiver circuits in 40-nm CMOS. IEEE J. Solid-State Circuits 47(9), 2049–2067 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    C. Li, R. Bai, A. Shafik, E.Z. Tabasy, B. Wang, G. Tang, C. Ma, C.-H. Chen, Z. Peng, M. Fiorentino, R.G. Beausoleil, P. Chiang, S. Palerm, Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm CMOS. IEEE J. Solid-State Circuits 49(6), 1419–1436 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    M. Rakowski, J. Ryckaert, M. Pantouvaki, H. Yu, W. Bogaerts, K. de Meyer, M. Steyaert, P.P. Absil, J.V. Campenhout, Low-power, 10-Gb/s 1.5-Vpp differential CMOS driver for a silicon electro-optic ring modulator, in Proceedings of the IEEE Custom Integrated Circuits Conference (CICC) (2012), pp. 1–6Google Scholar
  27. 27.
    Y. Chen, M. Kibune, A. Toda, A. Hayakawa, T. Akiyama, S. Sekiguchi, H. Ebe, N. Imaizumi, T. Akahoshi, S. Akiyama, S. Tanaka, T. Simoyama, K. Morito, T. Yamamoto, T. Mori, Y. Koyanagi, H. Tamura, A 25 Gb/s hybrid integrated silicon photonic transceiver in 28 nm CMOS and SOI, in Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC) (2015), pp. 1–3Google Scholar
  28. 28.
    H. Li, Z. Xuan, A. Titriku, C. Li, K. Yu, B. Wang, A. Shafik, N. Qi, Y. Liu, R. Ding, T. Baehr-Jones, M. Fiorentino, M. Hochberg, S. Palermo, P.Y. Chiang, A 25 Gb/s, 4.4 V-swing, AC-coupled ring modulator-based WDM transmitter with wavelength stabilization in 65 nm CMOS. IEEE J. Solid-State Circuits 50(12), 3145–3159 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    M. Rakowski, M. Pantouvaki, P. Verheyen, J.D. Coster, G. Lepage, P. Absil, J.V. Campenhout, A 50Gb/s, 610fJ/bit hybrid CMOS-Si photonics ring-based NRZ-OOK transmitter, in Optical Fiber Communications Conference and Exhibition (OFC) (20–24 March 2016), pp. 1–3,]
  30. 30.
    N. Vokić B. Schrenk, P. Mülner, B. Goll, D. Fowler, S. Jessenig, J. Kraft, M. Fournier, V. Muffato, R. Hainberger, K. Schneider-Hornstein, H. Zimmermann, 3D-Integrated Transceiver for Optical Communications, in Austrian Workshop on Microelectronics (Austrochip) (2018). AcceptedGoogle Scholar
  31. 31.
    C.S.C. Sun, M. Georgas, J. Orcutt, B. Moss, Y.H. Chen, J. Shainline, M. Wade, K. Mehta, K. Nammari, E. Timurdogan, D. Miller, O. Tehar-Zahav, Z. Sternberg, J. Leu, J. Chong, R. Bafrali, G. Sandhu, M. Watts, R. Meade, M. Popović, R. Ram, V. Stojanović, A monolithically-integrated chip-to-chip optical link in bulk CMOS. IEEE J. Solid-State Circuits 50(4), 828–844 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    C. Sun, M. Wade, M. Georgas, S. Lin, L. Alloatti, B. Moss, R. Kumar, A.H. Atabaki, F. Pavanello, J.M. Shainline, J.S. Orcutt, R.J. Ram, M. Popović, V. Stojanović, A 45 nm CMOS-SOI monolithic photonics platform with bit-statistics-based resonant microring thermal tuning. IEEE J. Solid-State Circuits 51(4), 893–907 (2016), Scholar
  33. 33.
    K.T. Settaluri, S. Lin, S. Moazeni, E. Timurdogan, C. Sun, M. Moresco, Z. Su, Y.-H. Chen, G. Leake, D. LaTulipe, C. McDonough, J. Hebding, D. Coolbaugh, M. Watts, V. Stojanović, Demonstration of an optical chip-to-chip link in a 3D integrated electronic-photonic platform, in Proceedings of the European Solid-State Circuits Conference (2015), pp. 156–159Google Scholar
  34. 34.
    M. Rakowski, M. Pantouvaki, P.D. Heyn, P. Verheyen, M. Ingels, H. Chen, J.D. Coster, G. Lepage, B. Snyder, K.D. Meyer, M. Steyaert, N. Pavarelli, J.S. Lee, P. O’Brien, P. Absil, J.V. Campenhout, A 4 \(\times \) 20Gb/s WDM ring-based hybrid CMOS silicon photonics transceiver, in IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers (22–26 February 2015), pp. 1–3,
  35. 35.
    A. Roshan-Zamir, B. Wang, S. Telaprolu, K. Yu, C. Li, M.A. Seyedi, M. Fiorentino, R. Beausoleil, S. Palermo, A 40 Gb/s PAM4 silicon microring resonator modulator transmitter in 65nm CMOS, in 2016 IEEE Optical Interconnects Conference (OI) (2016), pp. 8–9,
  36. 36.
    C. Xiong, G. Douglas, J. Proesel, J. Orcutt, W. Haensch, W.M.J. Green, A monolithic 56 Gb/s CMOS integrated nanophotonic PAM-4 transmitter, in Optical Interconnects Conference (OI) (20–24 March 2015), pp. 16–17,]
  37. 37.
    X. Wu, B. Dama, P. Gothoskar, P. Metz, K. Shastri, S. Sunder, J. Van der Spiegel, Y. Wang, M. Webster, W. Wilson, A 20Gb/s NRZ/PAM-4 1V transmitter in 40nm CMOS driving a Si-photonic modulator in 0.13\(\upmu \)m CMOS, in IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers (17–21 February 2013), pp. 128–129,
  38. 38.
    L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, S. Laval, 42 GHz pin germanium photodetector integrated in a silicon-on-insulator waveguide. Opt. Express 17(8), 6252–6257 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    E. Temporiti, G. Minoia, M. Repossi, D. Baldi, A. Ghilioni, F. Svelto, A 3D-integrated 25 Gbps silicon photonic receiver in PIC25G and 65 nm CMOS technologies, in Proceedings of the European Solid-State Circuits Conference (2014), pp. 131–134Google Scholar
  40. 40.
    T. Takemoto, H. Yamashita, T. Yazaki, N. Chujo, Y. Lee, Y. Matsuoka, A 25-to-28 Gb/s high-sensitivity (\(-\)9.7 dBm) 65 nm CMOS otical receiver for board-to-board interconnects. IEEE J. Solid-State Circuits 49(10), 2259–2276 (2014)Google Scholar
  41. 41.
    M.H. Nazari, A. Emami-Neyestanak, A 24-Gb/sdouble-sampling receiver for ultra-low-power optical communication. IEEE J. Solid-State Circuits 48(2), 344–357 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    S. Assefa, H. Pan, S. Shank, W.M.J. Green, A. Rylyakov, C. Schow, M. Khater, S. Kamlapurkar, E. Kiewra, C. Reinholm, T. Topuria, P. Rice, C. Baks, Y. Vlasov, Monolithically integrated silicon nanophotonics receiver in 90 nm CMOS technology node, in Proceedings of the Optical Fiber Communication Conference (2013), pp. 1–3Google Scholar
  43. 43.
    J.C. Huang, Y.S. Lai, K.Y.J. Hsu, Broadband transimpedance amplifier in 0.35 \(\upmu \)m SiGe BiCMOS technology for 10-Gb/s optical receiver front-end application, in IEEE Custom Integrated Circuits Conference (CICC) (2008), pp. 245–248Google Scholar
  44. 44.
    M. Atef, R. Swoboda, H. Zimmermann, An integrated optical receiver for 2.5 Gbit/s using 4-PAM signaling, in Proceedings of the International Conference on Microelectronics (2010), pp. 76–79Google Scholar
  45. 45.
    S.H. Huang, W.Z. Chen, A 25 Gb/s 1.13 pJ/b \(-\)10.8 dBm input sensitivity optical receiver in 40 nm CMOS. IEEE J. Solid-State Circuits 52(3), 747–756 (2017), Scholar
  46. 46.
    S. Saeedi, S. Menezo, G. Pares, A. Emami, A 25 Gb/s 3D-integrated CMOS/silicon-photonic receiver for low-power high-sensitivity optical communication. IEEE J. Lightwave Technol. 34(12), 2924–2933 (2016), Scholar
  47. 47.
    J.E. Proesel, Z. Toprak-Deniz, A. Cevrero, I. Ozkaya, S. Kim, D.M. Kuchta, S. Lee, S.V. Rylov, H. Ainspan, T.O. Dickson, J.F. Bulzacchelli, M. Meghelli, A 32 Gb/s, 4.7 pJ/bit optical link with \(-\)11.7 dBm sensitivity in 14-nm FinFET CMOS. IEEE J. Solid-State Circuits 53(4), 1214–1226 (2018), Scholar
  48. 48.
    B. Moeneclaey, G. Kanakis, J. Verbrugghe, N. Iliadis, W. Soenen, D. Kalavrouziotis, C. Spatharakis, S. Dris, X. Yin, P. Bakopoulos, E. Mentovich, H. Avramopoulos, J. Bauwelinck, A 64 Gb/s PAM-4 linear optical receiver, in Optical Fiber Communication Conference (Optical Society of America, 2015), p. M3C.5,
  49. 49.
    M. Atef, R. Swoboda, H. Zimmermann, An, integrated optical receiver for 2.5Gbit/s using 4-PAM signaling, in 2010 International Conference on Microelectronics (2010), pp. 76–79,
  50. 50.
    J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, R. Henderson, A 32 \( \times \) 32 50 ps resolution 10 bit time to digital converter array in 130 nm CMOS for time correlated imaging, in Proceedings of the IEEE Custom Integrated Circuits Conference (CICC) (2009), pp. 77–80Google Scholar
  51. 51.
    B. Behroozpouri, P.A.M. Sandborn, N. Quack, T.-J. Seok, Y. Matsui, M.C. Wu, B.E. Boser, Electronic-photonic integrated circuit for 3D microimaging. IEEE J. Solid-State Circuits 52(1), 161–172 (2017)ADSCrossRefGoogle Scholar
  52. 52.
    N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, A. Yariv, Precise control of broadband frequency chirps using optoelectronic feedback. Opt. Express 17(18), 15991–15999 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    F. Aflatoumi, B. Abiri, A. Rekhi, A. Hajimiri, Nanophotonic coherent imager. Opt. Express 23(4), 5117–5125 (2015)ADSCrossRefGoogle Scholar
  54. 54.
    B. Behroozpouri, P.A.M. Sandborn, N. Quack, T.-J. Seok, Y. Matsui, M.C. Wu, B.E. Boser, Electronic-photonic integrated circuit for 3D microimaging, in IEEE International Solid-State Circuits Conference (2016), pp. 214–215Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.EMCETechnische Universität WienViennaAustria

Personalised recommendations