Advertisement

Examples of Optoelectronic Integrated Circuits

  • Horst ZimmermannEmail author
Chapter
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 13)

Abstract

In this chapter the full variety of silicon receiver OEICs in digital and analog techniques will be introduced. Examples of optical receivers range from low-power synchronous digital circuits for massively parallel optical interconnects and three-dimensional optical storage to asynchronous Gb/s fiber receivers. Hybrid integrated laser drivers are included as examples of optical emitters. Low-offset analog OEICs for two-dimensional optical storage systems like digital-versatile-disk (DVD) and digital-video-recording (DVR) will be described as well as image sensors. Among various optical sensors for industrial and medical applications, smart pixel sensors as well as distance measurement circuits leading to 3D cameras and paving the way to innovative cameras-on-a-chip (CoC) will be presented. Furthermore, very interesting 3D sensors with pin and single-photon avalanche diodes are described. Techniques like integrated voltage-up-converters and the four-quarter POF receiver approach for speed enhancement of OEICs as well as newer POF receivers will also be introduced. Innovative solutions to overcome the bandwidth limitations of integrated resistors in transimpedance amplifiers are described. Developments of burst-mode and deep-sub-\(\upmu \)m receivers are additionally addressed. Newest integrated receivers for optical wireless communication with pin and avalanche photodiodes are included. Two highly parallel optical receivers with total data rates of up to 140 Gb/s are described. Furthermore, highly innovative SPAD receivers eliminating electronic noise and reducing the gap to the quantum limit are introduced. A comparison of fiber and optical interconnect receivers plus an innovative optoelectronical PLL circuit as well as a summary are finally included.

References

  1. 1.
    K. Ayadi, M. Kuijk, P. Heremans, G. Bickel, G. Borghs, R. Vounckx, A monolithic optoelectronic receiver in standard 0.7 \(\upmu \)m CMOS operating at 180 MHz and 176 fJ light input energy. IEEE Photonics Technol. Lett. 9(1), 88–90 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    J.F. Heanue, M.C. Bashaw, L. Hesselink, Volume holographic storage and retrieval of digital data. Science 265(8), 749–752 (1994)ADSCrossRefGoogle Scholar
  3. 3.
    G. Williams, J. Janesick, Cameras with CCD’s capture new markets, Laser Focus World, Detector Handbook (1996), pp. S5–S9Google Scholar
  4. 4.
    M.E. Schaffer, P.A. Mitkas, Smart photodetector array for page-oriented optical memory in 0.35-\(\upmu \)m CMOS. IEEE Photonics Technol. Lett. 10(6), 866–868 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    M. Kuijk, D. Coppee, R. Vounckx, Spatially modulated light detector in CMOS with sense-amplifier receiver operating at 180 Mb/s for optical data link applications and parallel optical interconnects between chips. IEEE J. Sel. Top. Quantum Electron. 4(6), 1040–1045 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    F. Esfahani, K.O. Hofacker, A. Benedix, H.H. Berger, Small area optical inputs for high speed CMOS circuits, in 9th International IEEE ASIC Conference (Rochester, N.Y., 1996), pp. 7–10Google Scholar
  7. 7.
    H.H. Berger, J. Sturm, F. Esfahani, A. Benedix, S. von Aichberger, B. Müller, K.O. Hofacker, Optical signal injection for high-speed wafer level function test of integrated circuits, in IEEE International Conference on Microelectronic Test Structures (IEEE, Monterey, CA, 1997), pp. 39–42Google Scholar
  8. 8.
    A.V. Krishnamoorthy, L.M.F. Chirovsky, W.S. Hobson, R.E. Leibenguth, S.P. Hui, G.J. Zydzik, K.W. Goossen, J.D. Wynn, B.J. Tseng, J. Lopata, J.A. Walker, J.E. Cunningham, L.A. D’Asaro, Vertical-cavity surface-emitting lasers flip-chip bonded to gigabit-per-second CMOS circuits. IEEE Photonics Technol. Lett. 11(1), 128–130 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    T.C. Banwell, A.C.V. Lehmen, R.R. Cordell, VCSE laser transmitters for parallel data links. IEEE J. Quantum Electron. 29(2), 635–644 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    D.L. Mathine, R. Droopad, G.N. Maracas, A vertical-cavity surface-emitting laser applied to a 0.8 \(\upmu \)m NMOS driver. IEEE Photonics Technol. Lett. 9(7), 869–871 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    D. Bolliger, P. Malcovati, A. Häberli, H. Baltes, P. Sarro, F. Maloberti, Integrated ultraviolet sensor system with on-chip 1 G\(\Omega \) transimpedance amplifier, in ISSCC (1996), pp. 328–329Google Scholar
  12. 12.
    M. Seifart, Analoge Schaltungen (Verlag Technik, Berlin, 1996), pp. 315–316Google Scholar
  13. 13.
    C. Stanescu, S. Porumbescu, A. Hanganu, S. Costea, I. Mirea, G. Aungurecei, M. Furis, B. Mihalea, Bipolar preamplifier for monolithic OEIC receiver, in Proceedings of International Semiconductor Conference (CAS’97) (Sinaia, Romania, 1997), pp. 567–570Google Scholar
  14. 14.
    B. Schneider, H. Fischer, S. Benthien, H. Keller, T. Lule, P. Rieve, M. Sommer, J. Schulte, M. Böhm, TFA image sensors: from the one transistor cell to a locally adaptive high dynamic range sensor, in IEDM Digest Technical Papers (1997), pp. 209–212Google Scholar
  15. 15.
    T. Lule, H. Fischer, S. Benthien, H. Keller, M. Sommer, J. Schulte, P. Rieve, M. Böhm, Image sensor with per-pixel programmable sensitivity in TFA technology, in Micro System Technologies, ed. by H. Reichl, A. Heuberger (1996), p. 675Google Scholar
  16. 16.
    T. Hamamoto, K. Aizawa, A computational image sensor with adaptive pixel-based integration time. IEEE J. Solid-State Circuits 36(4), 580–585 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    M. Loose, K. Meier, J. Schemmel, A self-calibrating single-chip CMOS camera with logarithmic response. IEEE J. Solid-State Circuits 36(4), 586–596 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    R.H. Nixon, S.E. Kemeny, B. Pain, C.O. Staller, E.R. Fossum, 256 \(\times \) 256 CMOS active pixel sensor camera-on-a-chip. IEEE J. Solid-State Circuits 31(12), 2046–2050 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    I. Stuttart, The high-dynamic-range CMOS evaluation camera (HDRC), in Institut für Mikroelektronik Stuttgart, Germany, Publicity material (1997)Google Scholar
  20. 20.
    G.F. Marshall, S. Collins, A high-dynamic-range front-end for automatic image processing applications, in Proceedings of SPIE, Advanced Focal Plane Arrays and Electronic Cameras, vol. 3410 (1998)Google Scholar
  21. 21.
    S. Kavadias, B. Dierickx, D. Scheffer, A. Alaerts, D. Uwaerts, J. Bogaerts, A logarithmic response CMOS image sensor with on-chip calibration. IEEE J. Solid-State Circuits 35(8), 1146–1152 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    R.L. Geiger, P.E. Allen, N.R. Strader, VLSI Design Techniques for Analog and Digital Circuits (McGraw-Hill, New York, 1990)Google Scholar
  23. 23.
    O. Schrey, J. Huppertz, G. Filimonovic, W. Brockherde, B. J. Hosticka, A 1k \(\times \) 1k high dynamic range CMOS image sensor with on-chip programmable region of interest readout, in Proceedings of 27th European Solid-State Circuits Conference (ESSCIRC) (2001), pp. 124–127Google Scholar
  24. 24.
    R.W. Sandage, J.A. Connelly, A fingerprint opto-detector using lateral bipolar phototransistors in a standard CMOS process, in IEDM Digest Technical Papers (1995), pp. 171–174Google Scholar
  25. 25.
    L. Viarani, D. Stoppa, L. Gonzo, M. Gottardi, A. Simoni, A CMOS smart pixel for active 3D vision applications, in IEEE Proceeding Sensors (2002), pp. 11–14Google Scholar
  26. 26.
    R. Schwarte, Z. Xu, H. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, J. Schulte, A new electrooptical mixing and correlating sensor: facilities and applications of the photonic mixer device (PMD), in Proceedings of SPIE — Sensors, sensor systems, and sensor data processing, vol. 3100 (1997), pp. 245–253Google Scholar
  27. 27.
    Z. Xu, R. Schwarte, H. Heinol, B. Buxbaum, T. Ringbeck, Smart pixel — photonic mixer device (PMD), in Proceedings of M\(^2\)VIP’98 — International Conference on Mechatronics and Machine Vision in Practice (1998), pp. 259–264Google Scholar
  28. 28.
    R. Jeremias, W. Brockherde, G. Doemens, B. Hosticka, L. Listl, P. Mengel, A CMOS photosensor array for 3D imaging using pulsed laser, in ISSCC Digest of Technical Papers (2001), pp. 252–253Google Scholar
  29. 29.
    A. Nemecek, G. Zach, R. Swoboda, K. Oberhauser, H. Zimmermann, Integrated BiCMOS p-i-n photodetectors with high bandwidth and high responsivity. IEEE J. Sel. Top. Quantum Electron. 12(6), 1469–1475 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    A. Nemecek, K. Oberhauser, H. Zimmermann, Distance measurement sensor with PIN-photodiode and bridge circuit. IEEE Sens. J. 6(2), 391–397 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    M. Förtsch, H. Zimmermann, W. Einbrodt, K. Bach, H. Pless, Integrated PIN photodiodes in high-performance BiCMOS technology, in IEDM Digest Technical Papers (2002), pp. 801–804Google Scholar
  32. 32.
    G. Zach, H. Zimmermann, A, \(2 \times 32\) range-finding sensor array with pixel-inherent suppression of ambient light up to 120 klx, in Proceedings IEEE International Solid-State Circuits Conference (2009), pp. 352–353Google Scholar
  33. 33.
    G. Zach, M. Davidovic, H. Zimmermann, A 16 \(\times \) 16 pixel distance sensor with in-pixel circuitry that tolerates 150 klx of ambient light. IEEE J. Solid-State Circuits 45(7), 1345–1353 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    G. Zach, M. Davidovic, H. Zimmermann, Extraneous-light resistant multipixel range sensor based on a low-power correlating pixel-circuit, in Proceedings of European Solid-State Circuits Conference (2009), pp. 236–239Google Scholar
  35. 35.
    M. Davidovic, G. Zach, H. Zimmermann, A 12-bit fully differential 2MS/s successive approximation analog-to-digital converter with reduced power consumption, in Proceedings of DDECS (2010), pp. 399–402Google Scholar
  36. 36.
    M. Perenzoni, P. Kostov, M. Davidovic, G. Zach, H. Zimmermann, Electronics-Based 3D Sensors (Springer, Berlin, 2013), pp. 39–68Google Scholar
  37. 37.
    M. Davidovic, J. Seiter, M. Hofbauer, W. Gaberl, H. Zimmermann, A background light resistant TOF range finder with integrated PIN photodiode in 0.35 \(\upmu \)m CMOS, Proc. SPIE 8791, 87910R–1–87910R–6 (2013)Google Scholar
  38. 38.
    M. Davidovic, J. Seiter, M. Hofbauer, W. Gaberl, S. Schidl, H. Zimmermann, 64 \(\times \) 48 TOF sensor in 0.35 \(\upmu \)m CMOS with high ambient light immunity. IET Electron. Lett. 50(19), 1375–1377 (2014)CrossRefGoogle Scholar
  39. 39.
    M. Davidovic, J. Seiter, M. Hofbauer, W. Gaberl, H. Zimmermann, Monolithically integrated dual-lock-in optical sensor. IET Electron. Lett. 50(4), 306–308 (2014)CrossRefGoogle Scholar
  40. 40.
    M. Davidovic, M. Hofbauer, K. Schneider-Hornstein, H. Zimmermann, High dynamic range background light suppression for a TOF distance measurement sensor in 180 nm CMOS, in Proceedings IEEE Sensors Conference (2011), pp. 359–362Google Scholar
  41. 41.
    C.S. Bamji, P. O’Connor, T. Elkhabit, S. Mehta, B. Thompson, L.A. Prather, D. Snow, O.C. Akkaya, A. Daniel, A.D. Payne, T. Perry, M. Fenton, V.-H. Chan, A 0.13 \(\upmu \)m CMOS system-on-chip for a 512 \(\times \) 424 time-of-flight image sensor with multi-frequency photo-demodulation up to 130 MHz and 2 GS/s ADC. IEEE J. Solid-State Circuits 50(1), 303–319 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    C. Niclass, C. Favi, T. Kluter, M. Gersbach, E. Charbon, A 128 \(\times \) 128 single-photon image sensor with column-level 10-bit time-to-digital converter array. IEEE J. Solid-State Circuits 43(12), 2977–2989 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    C. Niclass, M. Sergioh, E. Charbon, A single-photon avalanche diode array fabricated in 0.35 \(\upmu \)m CMOS and based on an event-driven readout for TCSPC experiments. Proc. SPIE 6372, 63720S (2006)ADSCrossRefGoogle Scholar
  44. 44.
    C. Niclass, M. Soga, H. Matsubara, S. Kato, Kagami, A 100-m range 10-frame/s 340 \(\times \) 96-pixel time-of-flight depth sensor in 0.18-\(\upmu \)m CMOS. IEEE J. Solid-State Circuits 48(2), 559–572 (2013)Google Scholar
  45. 45.
    C. Niclass, M. Soga, H. Matsubara, M. Ogawa, Kagami, A, 0.18 \(\upmu \)m CMOS SoC for a 100-m range 10-frame/s 200 \(\times \) 96-pixel time-of-flight depth sensor. IEEE J. Solid-State Circuits 49(1), 315–330 (2014)Google Scholar
  46. 46.
    M. Perenzoni, D. Perenzoni, D. Stoppa, A 64 \(\times \) 64-pixel digital silicon photomultiplier direct TOF sensor with 100-MPhotons/s/pixel background rejection and imaging/altimeter mode with 0.14% precision up to 6 km for spacecraft navigation and landing. IEEE J. Solid-State Circuits 52(1), 151–160 (2017)ADSCrossRefGoogle Scholar
  47. 47.
    L. Pancheri, G.-F.D. Betta, L.H.C. Braga, D. Stoppa, A single-photon avalanche diode test chip in 150 nm CMOS technology, in Proceedings of International Conference on Microelectronic Test Structures (ICMTS) (2014), pp. 161–164Google Scholar
  48. 48.
    H. Xu, L. Pancheri, L.H.C. Braga, G.-F.D. Betta, D. Stoppa, Cross-talk characterization of dense single-photon avalanche diode arrays in CMOS 150 nm technology. SPIE Opt. Eng. 55(6), 067102 (2016)ADSCrossRefGoogle Scholar
  49. 49.
    W. Budde, Multidecade linearity measurements on Si photodiodes. Appl. Opt. 18(10), 1555–1558 (1979)ADSCrossRefGoogle Scholar
  50. 50.
    P. Seitz, Smart pixels, in IEEE Int. Symposium on High Performance Electron Devices for Microwave and Optoelectronic Applications (2001), pp. 229–234Google Scholar
  51. 51.
    K. Engelhardt, P. Seitz, High-resolution optical position encoder with large mounting tolerances. Appl. Opt. 36(13), 2912–2916 (1997)ADSCrossRefGoogle Scholar
  52. 52.
    S.U. Ay, S. Barna, E.R. Fossum, Differential mode CMOS active pixel sensor (APS) for optically programmable gate array (OPGA), in Proceedings of IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors (2001), pp. 161–164Google Scholar
  53. 53.
    A.F. Fercher, Optical coherence tomography. J. Biomed. Opt. 1(2), 157–173 (1996)ADSCrossRefGoogle Scholar
  54. 54.
    S. Bourquin, P. Seitz, R.P. Salathe, Optical coherence topography based on a two-dimensional smart detector array. Opt. Lett. 26(8), 512–514 (2001)ADSCrossRefGoogle Scholar
  55. 55.
    M. Barbaro, P.-Y. Burgi, A. Mortara, P. Nussbaum, F. Heitger, A 100 \(\times \) 100 pixel silicon retina for gradient extraction with steering filter capabilities and temporal output coding. IEEE J. Solid-State Circuits 37(2), 160–172 (2002)ADSCrossRefGoogle Scholar
  56. 56.
    J.G. Harris, C. Koch, E. Staats, J. Luo, Analog hardware for detecting discontinuities in early vision. Int. J. Comput. Vis. 4, 211–223 (1990)CrossRefGoogle Scholar
  57. 57.
    A.G. Andreou, R.C. Meitzler, K. Strohbehn, K.A. Boahen, Analog VLSI neuromophic image acquisition and pre-processing systems. Neural Netw. 8, 1323–1347 (1995)CrossRefGoogle Scholar
  58. 58.
    C.-Y. Wu, C.-F. Chiu, A new structure of the 2-D silicon retina. IEEE J. Solid-State Circuits 30, 890–897 (1995)ADSCrossRefGoogle Scholar
  59. 59.
    L. Raffo, S.P. Sabatini, G.M. Bo, G.M. Bisio, Analog VLSI circuits as physical structures for perception in early visual tasks. IEEE Trans. Neural Netw. 9, 1483–1494 (1998)CrossRefGoogle Scholar
  60. 60.
    M. Ishikawa, K. Ogawa, T. Komuro, I. Ishii, A CMOS vision chip with SIMD processing element array for 1 ms image processing, in IEEE International Solid-State Circuits Conference (1999), pp. 206–207Google Scholar
  61. 61.
    R. Etienne-Cummings, J. van der Spiegel, P. Mueller, A foveated silicon retina for two-dimensional tracking. IEEE Trans. Circuits Syst. I(47), 504–517 (2000)CrossRefGoogle Scholar
  62. 62.
    W.T. Freeman, E.L. Adelson, The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13, 891–906 (1991)CrossRefGoogle Scholar
  63. 63.
    A. Mortara, E.A. Vittoz, A 12-transistor PFM demodulator for analog neural networks communication. IEEE Trans. Neural Netw. 6, 1280–1283 (1995)CrossRefGoogle Scholar
  64. 64.
    E.A. Vittoz, Analog VLSI signal processing: why, where, and how? J. VLSI Signal Process. 8, 27–44 (1994)CrossRefGoogle Scholar
  65. 65.
    Y. Perelman, R. Ginosar, A low-light-level sensor for medical diagnostic applications. IEEE J. Solid-State Circuits 36(10), 1553–1558 (2001)ADSCrossRefGoogle Scholar
  66. 66.
    B.J. Hosticka, CMOS sensor systems. Sens. Actuators A 66, 335–341 (1998)CrossRefGoogle Scholar
  67. 67.
    G. de Graaf, R.F. Wolffenbuttel, Smart optical sensor systems in CMOS for measuring light intensity and color. Sens. Actuators A 67, 115–119 (1999)CrossRefGoogle Scholar
  68. 68.
    B. Fowler, A. El-Gammal, Techniques for pixel level analog to digital conversion, in Proceedings of SPIE, Infrared Readout Electronics IV, vol. 3360 (1998), pp. 2–12Google Scholar
  69. 69.
    E. Säckinger, W. Guggenbuhl, A high swing, high impedance MOS cascode circuit. IEEE J. Solid-State Circuits 25(1), 289–297 (1990)ADSCrossRefGoogle Scholar
  70. 70.
    S.R. Norsworthy, R. Schreier, G.C. Temes, Delta-Sigma Data Converters: Theory, Design and Simulation (IEEE Press, New York, 1997)Google Scholar
  71. 71.
    D. Droste, J. Bille, An ASIC for Hartmann-Shack wavefront detection. IEEE J. Solid-State Circuits 37(2), 173–182 (2002)ADSCrossRefGoogle Scholar
  72. 72.
    E.D. Malacara, Optical Shop Testing (Wiley, New York, 1991)Google Scholar
  73. 73.
    F. Zernike, Beugungstheorie des Schneidenverfahrens und seine verbesserte Form der Phasenkontrastmethode. Physica 1, 689 (1934)ADSzbMATHCrossRefGoogle Scholar
  74. 74.
    J.L. et al., “Winner-take-all networks of O(N) complexity”, in Proceedings of Neural Information Processing Systems (NIPS) (1989), p. 703Google Scholar
  75. 75.
    J.A.S. et al., CMOS current mode winner-take-all circuit with both excitory and inhibitory feedback. Electron. Lett. 29(10) (1993)Google Scholar
  76. 76.
    E.A. Vittoz, MOS transistors operated in the lateral bipolar mode and their application in CMOS technology. IEEE J. Solid-State Circuits 18(6), 273–279 (1983)ADSCrossRefGoogle Scholar
  77. 77.
    S. Groiss, J. Sturm, Low-noise sampling system for photocurrent detection with monolithically integrated photodiodes, in Proceedings of 27th European Solid-State Circuits Conference (ESSCIRC) (2001), pp. 180–183Google Scholar
  78. 78.
    S. Sengupta, H. Ouh, M.L. Johnston, An all-digital CMOS ambient light sensor using a single photon avalanche diode, in Proceedings IEEE Sensors Conference (2017), pp. 1–3Google Scholar
  79. 79.
    D. Portaluppi, E. Conca, F. Villa, 32 \(\times \) 32 SMOS SPAD imager for gated imaging, photon timing, and photon coincidence. IEEE J. Sel. Top. Quantum Electron. 24(2), 3800706 (2018)CrossRefGoogle Scholar
  80. 80.
    M. Perenzonil, N. Massari, D. Perenzoni, L. Gasparini, D. Stoppa, A 160\(\times \)120 pixel analog-counting single-photon imager with time-gating and self-referenced column-parallel A/D conversion for fluorescence lifetime imagingg. IEEE J. Solid-State Circuits 51(1), 155–167 (2016)CrossRefGoogle Scholar
  81. 81.
    N.A.W. Dutton, I. Gyongy, L. Parmesan, S. Gnecchi, N. Calder, B.R. Rae, S. Pellegrini, L.A. Grant, R.K. Henderson, A SPAD-based QVGA image sensor for single-photon counting and quanta imaging. IEEE Trans. Electron Devices 63(1), 189–196 (2016)ADSCrossRefGoogle Scholar
  82. 82.
    A.R. Ximenes, P. Padmanabhan, M.-J. Lee, Y. Yamashita, D.N. Yaung, E. Charbon, A 256 \(\times \) 256 45/65nm 3D-stacked SPAD-based direct TOF image sensor for LiDAR applications with optical polar modulation for up to 18.6 dB interference suppression, in Proceedings of IEEE International Solid-State Circuits Conference (ISSCC) (2018), pp. 96–97Google Scholar
  83. 83.
    M. Mansuripur, G. Sincerbox, Principles and techniques of optical data storage. Proc. IEEE 85(11), 1780–1796 (1997)CrossRefGoogle Scholar
  84. 84.
    E. Fullin, G. Voirin, M. Chevroulet, A. Lagos, J.-M. Moret, CMOS-based technology for integrated optoelectronics: a modular approach, in IEDM Digest Technical Papers (1994), pp. 527–530Google Scholar
  85. 85.
    E. Braß, U. Hilleringmann, K. Schumacher, System integration of optical devices and analog CMOS amplifiers. IEEE J. Solid-State Circuits 29(8), 1006–1010 (1994)ADSCrossRefGoogle Scholar
  86. 86.
    M. Yamamoto, M. Kubo, K. Nakao, Si-OEIC with a built-in PIN-photodiode. IEEE Trans. Electron Devices 42(1), 58–63 (1995)ADSCrossRefGoogle Scholar
  87. 87.
    M. Kyomasu, Development of an integrated high speed silicon PIN photodiode sensor. IEEE Trans. Electron Devices 42(6), 1093–1099 (1995)ADSCrossRefGoogle Scholar
  88. 88.
    H. Zimmermann, Monolithic Bipolar-, CMOS-, and BiCMOS-receiver OEICs, in Proceedings of International Semiconductor Conference (CAS’96) (Sinaia, Romania, 1996), pp. 31–40Google Scholar
  89. 89.
    A. Ghazi, T. Heide, H. Zimmermann, PIN CMOS OEIC for DVD systems, in Proceedings of 43rd International Scientific Colloquium, TU Ilmena, Germany, vol. 2 (1998), pp. 380–385Google Scholar
  90. 90.
    M. Förtsch, H. Zimmermann, A low-offset low-area 147-MHz CMOS DVD OEIC, in Proceedings of Austrochip (2003)Google Scholar
  91. 91.
    H. Zimmermann, K. Kieschnick, M. Heise, H. Pless, High-bandwidth BiCMOS OEIC for optical storage systems, in IEEE International Solid-State Circuits Conference (1999), pp. 384–385Google Scholar
  92. 92.
    H. Zimmermann, K. Kieschnick, Low-offset BiCMOS OEIC for optical storage systems. Electron. Lett. 36(14), 1223–1224 (2000)CrossRefGoogle Scholar
  93. 93.
    G.W. de Jong, J.R.M. Bergervoet, J.H.A. Brekelmans, J.F.P. van Mil, A DC-to-250 MHz current pre-amplifier with integrated photodiodes in standard CBiMOS for optical storage systems, in ISSCC (2002), pp. 362–363Google Scholar
  94. 94.
    H. Zimmermann, T. Heide, A. Ghazi, DVD OEIC and 1 Gbit/s fiber receiver in CMOS technology, in IEEE International Workshop on High Performance Electron Devices for Microwave and Optoelectronic Applications (2000), pp. 224–229Google Scholar
  95. 95.
    B.-E. Kim, M.-S. Jeong, D.-M. Cho, J.-K. KIM, J.-S. Lee, S.-K. KIM, S.-W. KIM, 0.8 \(\mu \)m CMOS analog front-end processor for CD-ROM. IEEE Trans. Consum. Electron. 42(3), 826–831 (1996)Google Scholar
  96. 96.
    M. Ingels, G.V.D. Plas, J. Crols, M. Steyart, A CMOS 18 THz\(\Omega \) 240 Mb/s transimpedance amplifier and 155 Mb/s LED-driver for low cost optical fiber links. IEEE J. Solid-State Circuits 29(12), 1552–1559 (1994)ADSCrossRefGoogle Scholar
  97. 97.
    M. Ingels, M. Steyart, A 1-Gb/s, 0.7-\(\upmu \)m CMOS optical receiver with full rail-to-rail output swing. IEEE J. Solid-State Circuits 34(7), 971–976 (1999)ADSCrossRefGoogle Scholar
  98. 98.
    T. Takimoto, N. Fukunaga, M. Kubo, N. Okabayashi, High speed Si-OEIC(OPIC) for optical pickup. IEEE Trans. Consum. Electron. 44(1), 137–142 (1998)CrossRefGoogle Scholar
  99. 99.
    K. Kieschnick, T. Heide, A. Ghazi, H. Zimmermann, P. Seegebrecht, High-speed photonic CMOS and BiCMOS receiver ICs, in Proceedings of 25th European Solid-State Circuits Conference (ESSCIRC) (1999), pp. 398–401Google Scholar
  100. 100.
    W.T. Holman, J.A. Connelly, A compact low-noise operational amplifier for a 1.2 \(\upmu \)m digital CMOS technology. IEEE J. Solid-State Circuits 30(6), 710–714 (1995)ADSCrossRefGoogle Scholar
  101. 101.
    H. Zimmermann, T. Heide, A. Ghazi, Monolithic high-speed CMOS-photoreceiver. IEEE Photonics Technol. Lett. 11(2), 254–256 (1999)ADSCrossRefGoogle Scholar
  102. 102.
    H. Zimmermann, K. Kieschnick, M. Heise, H. Pless, BiCMOS OEIC for optical storage systems. Electron. Lett. 34(19), 1875–1876 (1998)CrossRefGoogle Scholar
  103. 103.
    H. Zimmermann, Full custom CMOS and BiCMOS OPTO-ASICs, in Proceedings of 5th International Conference on Solid-State and Integrated-Circuit Technology (1998), pp. 344–347Google Scholar
  104. 104.
    P.R. Gray, R.G. Meyer, Analysis and Design of Analog Integrated Circuits (Wiley, New York, 1993), p. 456Google Scholar
  105. 105.
    H. Zimmermann, K. Kieschnick, T. Heide, A. Ghazi, Integrated high-speed, high-responsivity photodiodes in CMOS and BiCMOS technology, in Proceedings of 29th European Solid-State Device Conference (ESSDERC) (1999), pp. 332–335Google Scholar
  106. 106.
    K. Kieschnick, H. Zimmermann, P. Seegebrecht, BiCMOS OEIC with enhanced sensitivity for DVD systems, in Proceedings of 27th European Solid-State Circuits Conference (ESSCIRC) (2001), pp. 184–187Google Scholar
  107. 107.
    H. Zimmermann, Integrated Silicon Optoelectronics (Springer, Berlin, 2000)CrossRefGoogle Scholar
  108. 108.
    C. Seidl, J. Knorr, H. Zimmermann, Single-stage 378MHz 178k\(\Omega \) transimpedance amplifier with capacitive-coupled voltage dividers, in Proceedings IEEE International Solid-State Circuits Conference (2004), pp. 470–471Google Scholar
  109. 109.
    H. Zimmermann, Integrated Silicon Optoelectronics (Springer, Berlin, 2010)CrossRefGoogle Scholar
  110. 110.
    C. Seidl, J. Knorr, H. Zimmermann, Simple feedback network for bandwidth enhancement of transimpedance amplifiers. Electron. Lett. 39(25), 1849–1851 (2003)CrossRefGoogle Scholar
  111. 111.
    C. Seidl, R. Swoboda, H. Zimmermann, Optical receiver IC with capacitive coupled distributed resistors resulting in effectively reduced parasitic capacitance. Electron. Lett. 41(23), 1301–1302 (2005)CrossRefGoogle Scholar
  112. 112.
    R. Swoboda, K. Schneider-Hornstein, H. Wille, G. Langguth, H. Zimmermann, BiCMOS-integrated photodiode exploiting drift enhancement. Opt. Eng. 53(8), 087103-1–087103-4 (2014)ADSCrossRefGoogle Scholar
  113. 113.
    J.-S. Rieh, D. Klotzkin, O. Qasaimeh, L.-H. Lu, K. Yang, L.P.B. Katehi, P. Bhattacharya, E.T. Croke, Monolithically integrated SiGe-Si PIN-HBT front-end photoreceiver. IEEE Photonics Technol. Lett. 10(3), 415–417 (1998)ADSCrossRefGoogle Scholar
  114. 114.
    L.D. Garrett, J. Qi, C.L. Schow, J.C. Campbell, A silicon-based integrated NMOS-p-i-n photoreceiver. IEEE Trans. Electron Devices 43(3), 411–416 (1996)ADSCrossRefGoogle Scholar
  115. 115.
    S. He, L.D. Garrett, K.-H. Lee, J.C. Campbell, Monolithic integrated silicon NMOS PIN photoreceiver. Electron. Lett. 30(22), 1887–1888 (1994)CrossRefGoogle Scholar
  116. 116.
    J. Qi, C.L. Schow, L.D. Garrett, J.C. Campbell, A silicon NMOS monolithically integrated optical receiver. IEEE Photonics Technol. Lett. 9(5), 663–665 (1997)ADSCrossRefGoogle Scholar
  117. 117.
    C.L. Schow, J.D. Schaub, R. Li, J. Qi, J.C. Campbell, A monolithically integrated 1-Gb/s silicon photoreceiver. IEEE Photonics Technol. Lett. 11(1), 120–121 (1999)ADSCrossRefGoogle Scholar
  118. 118.
    J.D. Schaub, R. Li, S.M. Csutak, J.C. Campbell, High-speed monolithic silicon photoreceivers on high resistivity and SOI substrates. IEEE J. Light. Technol. 19(2), 272–278 (2001)ADSCrossRefGoogle Scholar
  119. 119.
    P.J.-W. Lim, A.Y.C. Tzeng, H.L. Chuang, S.A.S. Onge, A 3.3 V monolithic photodetector/CMOS preamplifier for 531 Mb/s optical data link applications, in ISSCC (1993), pp. 96–97Google Scholar
  120. 120.
    D.M. Kuchta, H.A. Ainspan, F.J. Canora, R.P. Schneider, Performance of fiber-optic data links using 670 nm CW VCSELs and a monolithic Si photodetector and CMOS preamplifier. IBM J. Res. Develop. 39(1/2), 63–72 (1995)CrossRefGoogle Scholar
  121. 121.
    K. Kieschnick, H. Zimmermann, H. Pless, P. Seegebrecht, BiCMOS receiver OEIC for optical interconnects, in Ext. Abstract 3nd IEEE Workshop on Signal Propagation on Interconnects, Neustadt, Germany (1999), pp. 72–73Google Scholar
  122. 122.
    R. Swoboda, H. Zimmermann, A low-noise monolithically integrated 1.5 Gb/s optical receiver in 0.6 \(\upmu \)m BiCMOS technology. IEEE J. Sel. Top. Quantum Electron. 9(2), 419–424 (2003)Google Scholar
  123. 123.
    R. Li, J.D. Schaub, S.M. Csutak, J.C. Campbell, A high-speed monolithic silicon photoreceiver fabricated on SOI. IEEE Photonics Technol. Lett. 12(8), 1046–1048 (2000)ADSCrossRefGoogle Scholar
  124. 124.
    S.M. Csutak, J.D. Schaub, W.E. Wu, J.C. Campbell, High-speed monolithically integrated silicon optical receiver fabricated in 130 nm CMOS technology. IEEE Photonics Technol. Lett. 14(4), 516–518 (2002)ADSCrossRefGoogle Scholar
  125. 125.
    S.M. Csutak, J.D. Schaub, W.E. Wu, R. Shimer, J.C. Campbell, High-speed monolithically integrated silicon photoreceivers fabricated in 130-nm CMOS technology. J. Light. Technol. 20(9), 1724–1729 (2002)ADSCrossRefGoogle Scholar
  126. 126.
    R. Swoboda, J. Knorr, H. Zimmermann, A 5-Gb/s OEIC with voltage-up-converter. IEEE J. Solid-State Circuits 40(7), 1521–1526 (2005)ADSCrossRefGoogle Scholar
  127. 127.
    R. Swoboda, H. Zimmermann, Monolithic optical receiver in 0.5 \(\upmu \)m BiCMOS technology for wavelengths up to 850 nm, in Proceedings of 2nd IEEE International Conference on Group IV Photonics (2005), pp. 180–182Google Scholar
  128. 128.
    T. Heide, H. Zimmermann, Investigation of optical interconnect receivers in standard micron and sub-micron MOS technology. Opt. Eng. 42(3), 773–786 (2003)ADSCrossRefGoogle Scholar
  129. 129.
    R.C. Jaeger, Microelectronic Circuit Design (McGraw-Hill, New York, 1997), p. 934Google Scholar
  130. 130.
    H. Zimmermann, U. Müller, R. Buchner, P. Seegebrecht, Optoelectronic receiver circuits in CMOS-technology, in Mikroelektronik’97, GMM-Fachbericht 17 (VDE-Verlag, Berlin, Offenbach, 1997), pp. 195–202Google Scholar
  131. 131.
    H. Zimmermann, A. Ghazi, T. Heide, R. Popp, R. Buchner, in Proceedings of 49th Electronic Components and Technology Conference (ECTC) (1999), pp. 1030–1035Google Scholar
  132. 132.
    C. Rooman, D. Coppee, M. Kuijk, Asynchronous 250-Mb/s optical receivers with integrated detector in standard CMOS technology for optocoupler applications. IEEE J. Solid-State Circuits 35(7), 953–957 (2000)ADSCrossRefGoogle Scholar
  133. 133.
    C. Rooman, M. Kuijk, R. Windisch, R. Vounckx, G. Borghs, A. Plichta, M. Brinkmann, K. Gerstner, R. Strack, P. van Daele, W. Woittiez, R. Baets, P. Heremans, Inter-chip optical interconnects using imaging fiber bundles and integrated CMOS detectors, in Proceedings of 27th European Conference on Optical Communication (ECOC) (2001), pp. 296–297Google Scholar
  134. 134.
    T.K. Woodward, A.V. Krishnamoorthy, 1 Gbit/s CMOS photoreceiver with integrated detector operating at 850 nm. Electron. Lett. 34(12), 1252–1253 (1998)CrossRefGoogle Scholar
  135. 135.
    G. Williams, Lightwave receivers, in Topics in lightwave systems, ed. by L. Tingye (Academic Press, New York, 1991), pp. 79–148CrossRefGoogle Scholar
  136. 136.
    T. Yoshida, Y. Ohtomo, M. Shimaya, A novel p-i-n photodetector fabricated on SIMOX for 1 GHz 2 V CMOS OEICs, in IEDM Digest Technical Papers (1998), pp. 29–32Google Scholar
  137. 137.
    A. Apsel, A.G. Andreou, 5 mW Gbit/s silicon on sapphire CMOS optical receiver. Electron. Lett. 37(19), 1186–1188 (2001)CrossRefGoogle Scholar
  138. 138.
    A.G. Andreou, Z.K. Kalayjian, A. Apsel, P.O. Pouliquen, R.A. Athale, G. Simonis, R. Reedy, Silicon on Sapphire CMOS for optoelectronic microsystems. IEEE Circuits Syst. Mag. 1(3), 22–30 (2001)CrossRefGoogle Scholar
  139. 139.
    T.K. Woodward, A.V. Krishnamoorthy, R.G. Rozier, A.L. Lentine, Low-power, small-footprint gigabit Ethernet compatible optical receiver circuit in 0.25 \(\upmu \)m CMOS. Electron. Lett. 36(17), 1489–1490 (2000)CrossRefGoogle Scholar
  140. 140.
    K. Phang, D. Johns, A CMOS optical preamplifier for wireless infrared communications. IEEE Trans. Circuits Syst. 46(7), 852–859 (1999)CrossRefGoogle Scholar
  141. 141.
    T. Heide, A. Ghazi, H. Zimmermann, High speed optical PIN-CMOS-receiverss, in IEEE International Workshop on High Performance Electron Devices for Microwave and Optoelectronic Applications (1998), pp. 72–76Google Scholar
  142. 142.
    H. Zimmermann, T. Heide, H. Pless, High-performance receivers for optical interconnects in standard MOS technology, in Optoelectronic Interconnects VIII, SPIE Proc. Vol. 4292, (2001), pp. 1–9Google Scholar
  143. 143.
    T. Heide, Monolithische Lasertreiber- und Empfängerschaltkreise in CMOS-Technologie für die optische Kurzstreckenübertragung, Ph.D. Thesis, Christian-Albrechts University of Kiel (2000)Google Scholar
  144. 144.
    H. Zimmermann, T. Heide, A monolithically integrated 1-Gb/s optical receiver in 1-\(\mu \)m CMOS technology. IEEE Photonics Technol. Lett. 13(7), 711–713 (2001)ADSCrossRefGoogle Scholar
  145. 145.
    G. Agrawal, Fiber-Optic Communication Systems (Wiley, New York, 1997)Google Scholar
  146. 146.
    K. Phang, D.A. Johns, A CMOS optical preamplifier for wireless infrared communications. IEEE Trans. Circuits Syst.-II: Analog. Digit. Signal Process. 46(7), 852–859 (1999)CrossRefGoogle Scholar
  147. 147.
    Infrared Data Association, Serial Infrared Physical Layer Link Specification (1997), http://www.irda.org
  148. 148.
    L.A.D. van den Broeke, A.J. Nieuwkerk, Wide-band integrated optical receiver with improved dynamic range using a current switch at the input. IEEE J. Solid-State Circuits 28(7), 862–864 (1993)ADSCrossRefGoogle Scholar
  149. 149.
    P. Palojarvi, T. Ruotsalainen, J. Kostamovaara, A variable gain transimpedance amplifier channel with a timing discriminator for a time-of-flight laser radar, in Proceedings of European Solid-State Circuits Conference (1997), pp. 384–387Google Scholar
  150. 150.
    R.G. Meyer, W.D. Mack, A wide-band low-noise variable-gain BiCMOS transimpedance amplifier. IEEE J. Solid-State Circuits 29(6), 701–706 (1994)ADSCrossRefGoogle Scholar
  151. 151.
    H. Khorramabadi, L. D. Tzeng, M.J. Tarsia, A 1.06 Gb/s-31 dBm to 0 dBm BiCMOS optical preamplifier featuring adaptive transimpedance, in IEEE International Solid-State Circuits Conference (1995), pp. 54–55Google Scholar
  152. 152.
    M.B. Ritter, F. Gfeller, W. Hirt, D. Rogers, S. Gowda, Circuit and system challenges in IR wireless communication, in ISSCC (1996), pp. 398–399Google Scholar
  153. 153.
    C. Petri, S. Rocchi, V. Vignoli, High dynamic CMOS preamplifiers for QW diodes. Electron. Lett. 34(9), 877–878 (1998)CrossRefGoogle Scholar
  154. 154.
    A. Tanabe, M. Soda, Y. Nakahara, A. Furukawa, T. Tamura, K. Yoshida, A single-chip 2.4 Gb/s CMOS optical receiver IC with low substrate crosstalk preamplifier, in ISSCC (1998), pp. 304–305Google Scholar
  155. 155.
    R.G. Swartz, Y. Ota, M.J. Tarsia, V.D. Archer, A burst mode, packet receiver with precision reset and automatic dark level compensation for optical bus communications, in Proceedings of Symposium on VLSI Technology (1993), pp. 67–68Google Scholar
  156. 156.
    J.L. Hullett, S. Moustakas, Optimum transimpedance broadband optical preamplifier design. Opt. Quantum Electron. 13, 65–69 (1981)CrossRefGoogle Scholar
  157. 157.
    R. Coppoolse, J. Verbeke, P. Lambrecht, J. Codenie, J. Vandewege, Comparison of a bipolar and a CMOS front end in broadband optical transimpedance amplifiers, in Proceedings of 38th Midwest Symp. Circuits and Systems (1996), pp. 1026–1029Google Scholar
  158. 158.
    A.S. Sedra, K.C. Smith, Microelectronic Circuits (Oxford University Press, Oxford, 1997), pp. 718–722Google Scholar
  159. 159.
    P. Brandl, S. Schidl, H. Zimmermann, PIN photodiode optoelectronic integrated receiver used for 3-Gb/s free-space optical communication. IEEE J. Sel. Top. Quantum Electron. 20(6), 6000510 (2014)CrossRefGoogle Scholar
  160. 160.
    P. Brandl, A. Weiss, H. Zimmermann, Automated alignment system for optical wireless communication systems using image recognition. Opt. Lett. 39(13), 4045–4048 (2014)ADSCrossRefGoogle Scholar
  161. 161.
    R. Swoboda, M. Förtsch, H. Zimmermann, 3Gbps-per-channel highly-parallel silicon receiver OEIC, in Proceedings of 33rd European Conference and Exhibition on Optical Communication (ECOC), vol. 2 (2007), pp. 255–256Google Scholar
  162. 162.
    H. Zimmermann, R. Swobodai, M. Förtsch, 45-channel monolithically integrated, high-temperature capable optical receiver with a total data rate of 140Gbit/s. SPIE Opt. Eng. 54(6), 067111 (2015)ADSCrossRefGoogle Scholar
  163. 163.
    P. Brandl, R. Enne, T. Jukic, H. Zimmermann, Optical wireless communication with adaptive focus and MEMS-based beam steering. IEEE Photonics Technol. Lett. 25(15), 1428–1431 (2013)ADSCrossRefGoogle Scholar
  164. 164.
    P. Brandl, T. Jukic, R. Enne, K. Schneider-Hornstein, H. Zimmermann, Optical wireless APD receiver with high background-light immunity for increased communication distances. IEEE J. Solid-State Circuits 51(7), 1663–1673 (2016)ADSCrossRefGoogle Scholar
  165. 165.
    R. Enne, B. Steindl, K. Schneider-Hornstein, H., Zimmermann, pn photodiode in 0.35-\(\upmu \)m high-voltage CMOS with 1.2-GHz bandwidth. Opt. Eng. 53(11), 116114 (2014)Google Scholar
  166. 166.
    M. Atef, R. Swoboda, H. Zimmermann, 1.25 Gbit/s over 50 m step-index plastic optical fiber using a fully integrated optical receiver with an integrated equalizer. J. Light. Technol. 30(1), 118–122 (2012)ADSCrossRefGoogle Scholar
  167. 167.
    W. Gaberl, R. Swoboda, H. Zimmermann, Integrated optical receiverfor lens-less short range free-space gigabit communication, in Proceedings of 35th European Conference and Exhibition on Optical Communication (ECOC) (2009), pp. 1–2Google Scholar
  168. 168.
    E. Kamrami, F. Lesage, M. Sawan, Low-noise, high-gain transimpedance amplifier integrated with SiAPD for low-intensity near-infrared light detection. IEEE Sens. J. 14(1), 258–269 (2014)ADSCrossRefGoogle Scholar
  169. 169.
    Y. Dong, K.W. Martin, A high-speed fully-integrated POF receiver with large-area photo detectors in 65 nm CMOS. IEEE J. Solid-State Circuits 47(9), 2080–2092 (2012)ADSCrossRefGoogle Scholar
  170. 170.
    Y. Dong, K.W. Martin, A 4-Gbps POF receiver using linear equalizer with multi-shunt-shunt feedbaks in 65-nm CMOS. IEEE Trans. Circuits Syst. II 60(10), 617–621 (2013)CrossRefGoogle Scholar
  171. 171.
    D. Milovancev, Free-space optical communication with CMOS and BiCMOS receivers, Ph. D. Thesis, Technische Universität, Wien (2019)Google Scholar
  172. 172.
    T. Jukic, B. Steindl, R. Enne, H. Zimmermann, 200 \(\upmu \)m APD OEIC in 0.35 \(\upmu \)m BiCMOS. IET Electron. Lett. 52(2), 128–130 (2016)CrossRefGoogle Scholar
  173. 173.
    D. Milovancev, T. Jukic, B. Steindl, P. Brandl, H. Zimmermann, Optical wireless cummunication using a fully integrated 400\(\upmu \)m diameter APD receiver. J. Eng. (2017).  https://doi.org/10.1049/joe.2017.0247CrossRefGoogle Scholar
  174. 174.
    D. Milovancev, T. Jukic, P. Brandl, R. Enne, H. Zimmermann, OWC using a monlithically integrated 200 \(\upmu \)m APD OEIC in 0.35 \(\upmu \)m BiCMOS technology. Opt. Express 24(2), 918–923 (2016)ADSCrossRefGoogle Scholar
  175. 175.
    T. Jukic, B. Steindl, R. Enne, H. Zimmermann, 400 \(\upmu \)m diameter APD OEIC in 0.35 \(\upmu \)m BiCMOS. IEEE Photonics Technol. Lett. 28(18), 2004–2007 (2016)ADSCrossRefGoogle Scholar
  176. 176.
    D. Milovancev, T. Jukic, B. Steindl, H. Zimmermann, Optical wireless monolithically integrated receiver with large-area APD and DC current rejection, in Advances in Wireless and Optical Communications, RTUWO’17 (2017), pp. 12–16Google Scholar
  177. 177.
    W. Gaberl, K. Schneider-Hornstein, R. Enne, B. Steindl, H. Zimmermann, Avalanche photodiode with high responsivity in 0.35 \(\upmu \)m CMOS, SPIE Opt. Eng. 53(4), 043105–1–043105–4 (2014)Google Scholar
  178. 178.
    B. Steindl, W. Gaberl, R. Enne, S. Schidl, K. Schneider-Hornstein, H. Zimmermann, Linear mode avalanche photodiode with 1-GHz bandwidth fabricated in 0.35 \(\upmu \)m CMOS. IEEE Photonics Technol. Lett. 26(15), 1511–1514 (2014)ADSCrossRefGoogle Scholar
  179. 179.
    T. Jukić, B. Steindl, R. Enne, H. Zimmermann, 200 \(\upmu \)m APD OEIC in 0.35 \(\upmu \)m BiCMOS. Electron. Lett. 52, 11 (2015)Google Scholar
  180. 180.
    R. Swoboda, H. Zimmermann, 2.5 Gbit/s silicon receiver OEIC with large diameter photodiode. Electron. Lett. 40(8), 505–507 (2004)CrossRefGoogle Scholar
  181. 181.
    F. Tavernier, M. Steyaert, High-speed POF receiver with 1 mm integrated photodiode in 180 nm CMOS, in IEEE ECOC, 36th European Conference on Optical Communication (Torino, Italy, 2010), pp. 1–3Google Scholar
  182. 182.
    T.S.C. Kao, F.A. Musa, A.C. Carusone, A 5-Gbit/s CMOS optical receiver with integrated spatially modulated light detector and equalization. IEEE Trans. Circuits Syst. I 57(11), 2844–2857 (2010)MathSciNetCrossRefGoogle Scholar
  183. 183.
    D. Lee, J. Han, G. Han, S.M. Park, An 8.5-Gb/s fully integrated CMOS optoelectronic receiver using slope-detection adaptive equalizer. IEEE J. Solid-State Circuits 45(12), 2861–2873 (2010)ADSCrossRefGoogle Scholar
  184. 184.
    H. Zimmermann, B. Steindl, M. Hofbauer, R. Enne, Integrated fiber optical receiver reducing the gap to the quantum limit. Sci. Rep. 7, 2652 (2017)ADSCrossRefGoogle Scholar
  185. 185.
    D. Milovancev, T. Jukic, B. Steindl, M. Hofbauer, R. Enne, K. Schneider-Hornstein, H. Zimmermann, Optical wireless communication with monolithic avalanche photodiode receivers, in Proceedings of IEEE Photonics Conference (2017), pp. 25–26Google Scholar
  186. 186.
    D. Milovancev, B. Steindl, M. Hofbauer, R. Enne, H. Zimmermann, Visible light communication at 50 Mbit/s using a SPAD receiver, in 11th IEEE/IET International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP18) (2018), p. 1570433378Google Scholar
  187. 187.
    D. Milovancev, J. Weidenauer, B. Steindl, M. Hofbauer, R. Enne, H. Zimmermann, Influence of on-off keying duty cycle on BER in wireless optical communication up to 75 Mbit/s using an SPAD and a RC LED, in International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (COBCOM) (2018), pp. 1–5Google Scholar
  188. 188.
    D. Chitnis, L. Zhang, H. Chun, S. Rajbhandari, G. Faulkner, D. O’Brien, S. Collins, A 200 Mb/s VLC demonstration with a SPAD based receiver, in Proceedings of IEEE Topical Summer Meeting Series (SUM) (2015), pp. 226–227Google Scholar
  189. 189.
    J. Kosman, O. Almer, A.V.N. Jalajakumari, S. Videv, H. Haas, R.K. Henderson, 60 Mb/s, 2 meters visible light communication in 1 klx ambient using an unlensed CMOS SPAD receiver, in Proceedings of IEEE Topical Summer Meeting Series (SUM) (2016), pp. 171–172Google Scholar
  190. 190.
    T. Nakahara, H. Tsuda, K. Tateno, S. Matsuo, T. Kurokawa, Hybride integration of GaAs pin-photodiodes with CMOS transimpedance amplifier circuits. Electron. Lett. 34(13), 1352–1353 (1998)CrossRefGoogle Scholar
  191. 191.
    T. Nakahara, H. Tsuda, N. Ishihara, K. Tateno, C. Amano, High-sensitivity 1 Gbit/s CMOS receiver integrated with GaAs- or InGaAs-photodiode by wafer-bonding. Electron. Lett. 37(12), 781–783 (2001)CrossRefGoogle Scholar
  192. 192.
    T.M. et al., 45 GHz transimpedance 32 dB limiting amplifier and 40 Gbps 1:4 high-sensitivity demultiplexer with decision circuit using SiGe HBTs for 40 Gbps optical receiver, in ISSCC Digest of Technical Papers (2000), pp. 60–61Google Scholar
  193. 193.
    F.T. Chien, Y.J. Chan, Bandwidth enhancement of transimpedance amplifier by a capacitive peaking design. IEEE J. Solid-State Circuits 34(8), 1167–1170 (1999)ADSCrossRefGoogle Scholar
  194. 194.
    C.-H. Lu, W.-Z. Chen, Bandwidth enhancement techniques for transimpedance amplifier in CMOS technologies, in Proceedings of 27th European Solid-State Circuits Conference (ESSCIRC) (2001), pp. 192–195Google Scholar
  195. 195.
    S.S. Mohan, M. Hershenson, S.P. Boyd, T.H. Lee, Bandwidth extension in CMOS with optimized on-chip inductors. IEEE J. Solid-State Circuits 35(3), 346–355 (2000)ADSCrossRefGoogle Scholar
  196. 196.
    H. Zimmermann, Integrated Silicon Optoelectronics (Springer, Berlin, 2000), p. 129Google Scholar
  197. 197.
    R. Swoboda, J. Knorr, H. Zimmermann, Speed-enhanced OEIC with voltage-up-converter. Electron. Lett. 39(1), 112–113 (2003)CrossRefGoogle Scholar
  198. 198.
    J.F. Dickson, On-chip high-voltage generation in NMOS integrated circuits using an improved voltage multiplier technique. IEEE J. Solid-State Circuits 11(3), 374–378 (1976)ADSCrossRefGoogle Scholar
  199. 199.
    H. Zimmermann, R. Swoboda, K. Schneider, and J. Knorr, “Comparison of CMOS and BiCMOS Optical Receiver SoCs”, in VLSI Circuits and Systems Conference at SPIE’s International Symposium on Microtechnologies for the New Millenium, SPIE Proc., vol. 5117 (2003), pp. 598–609Google Scholar
  200. 200.
    J. Knorr, R. Swoboda, H. Zimmermann, Speed-enhanced OEIC with area-efficient charge pump and shunt regulator, in IEEE International Symposium on High Performance Electron Devices for Microwave & Optoelectronic Applications (EDMO) (2003)Google Scholar
  201. 201.
    M. Atef, H. Zimmermann, Optical Communication Over Plastic Optical Fibers (Springer, Berlin, 2013)CrossRefGoogle Scholar
  202. 202.
    S. Brigati, F. Francesconi, D. Gardino, M. Poletti, A. Maglione, A 20 Mbit/s integrated photoreceiver with digital outputs in 0.6 \(\upmu \)m CMOS technology, in Proceedings of 28th European Solid-State Circuits Conference (ESSCIRC) (2002), pp. 503–506Google Scholar
  203. 203.
    S.M. Park, C. Papavassiliou, On the design of low-noise, Giga-Hertz bandwidth preamplifiers for optical receiver applications. Proc. ICECS 2, 785–788 (1999)Google Scholar
  204. 204.
    M. Förtsch, H. Zimmermann, Integrierter optischer Sensor mit geteilter Fotodiode zur Grenzfrequenzsteigerung, in Informationstagung Mikroelektronik, Vienna (2003)Google Scholar
  205. 205.
    R. Swoboda, H. Zimmermann, 2.5 Gb/s silicon receiver OEIC with large diameter photodiode. Electron. Lett. 40(8), 505–507 (2004)CrossRefGoogle Scholar
  206. 206.
    M. Lang, W. Bronner, W. Benz, M. Ludwig, V. Hurm, G. Kaufel, A. Leuther, J. Rosenzweig, M. Schlechtweg, Complete monolithic integrated 2.5 Gbit/s optoelectronic receiver with large area MSM photodiode for 850 nm wavelength. Electron. Lett. 37(20), 1247–1249 (2001)CrossRefGoogle Scholar
  207. 207.
    M. Atef, R. Swoboda, H. Zimmermann, Optical receiver front-end for multilevel signalling. Electron. Lett. 45(2), 121–122 (2009)CrossRefGoogle Scholar
  208. 208.
    S.C.J. Lee, F. Breyer, S. Randel, R. Gaudino, G. Bosco, A. Bluschke, M. Matthews, P. Rietzsch, H.P.A. van den Boom, A.M.J. Koonen, Discrete multitone modulation for maximizing transmission rate in step-index plastic optical fibers. J. Light. Technol. 27(11), 1503–1513 (2009)ADSCrossRefGoogle Scholar
  209. 209.
    O. Jeon, R.M. Fox, B.A. Myers, Analog AGC circuitry for a CMOS WLAN receiver. IEEE J. Solid-State Circuits 41(10), 2291–2300 (2006)ADSCrossRefGoogle Scholar
  210. 210.
    M. Atef, R. Swoboda, H. Zimmermann, Optical receiver for multicarrier modulation in short-reach communication. Electron. Lett. 46(3), 225–226 (2010)CrossRefGoogle Scholar
  211. 211.
    J.M. Castillo, A.D. Sanchez, M.L. Aranda, Differential transimpedance amplifiers for communications systems based on common-gate topology, in IEEE International Symposium on Circuits and Systems (ISCAS)Google Scholar
  212. 212.
    A. Kopa, A.B. Apsea, Common-emitter feedback transimpedance amplifier for analog optical receiver, in IEEE International Symposium on Circuits and Systems (ISCAS)Google Scholar
  213. 213.
    T. Ridder, P. Ossieur, X. Yin, B. Baekelandt, C. Melange, J. Bauwelinck, X. Qiu, J. Vandewege, BiCMOS variable gain transimpedance amplifier for automotive applications. Electron. Lett. 44(4), 287–288 (2008)CrossRefGoogle Scholar
  214. 214.
    J.P. Alegre, S. Celma, B. Calvo, N. Fiebig, S. Halder, SiGe analog AGC circuit for an 802.11a WLAN direct conversion receiver. IEEE Trans. Circuits Syst. II 56(2), 93–96 (2009)CrossRefGoogle Scholar
  215. 215.
    K. Mori, T. Akashi, Y. Tochio, H. Nobuhara, K. Tanaka, N. Nagase, Y. Akimoto, H. Kitasagami, Y. Shimizu, T. Yaname, A. Abe, M. Kawai, 155.52 Mb/s optical tranceiver modules for ONU/OLT on ATM-PON systems, in Proceedings European Conference on Optical Communication (ECOC) (1997), pp. 363–366Google Scholar
  216. 216.
    S. Yamashita, S. Ide, K. Mori, A. Hayakawa, N. Ueno, K. Tanaka, Novel cell-AGC technique for burst-mode CMOS preamplifier with wide dynamic range and high sensitivity for ATM-PON system, in Proceedings of 27th European Solid-State Circuits Conference (ESSCIRC) (2001), pp. 200–203Google Scholar
  217. 217.
    Y. Ota, R.G. Swartz, Burst-mode compatible optical receiver with a large dynamic range. J. Light. Technol. 8(12), 1897–1902 (1990)ADSCrossRefGoogle Scholar
  218. 218.
    D. Yamazaki, N. Nagase, H. Nobuhara, T. Funaki, K. Wakao, 156 Mbit/s preamplifier IC with wide dynamic range for ATM-PON application. Electron. Lett. 33(15), 1308–1309 (1997)CrossRefGoogle Scholar
  219. 219.
    M. Nakamura, N. Ishihara, Y. Akazawa, H. Kimura, An instantaneous response CMOS optical receiver IC with wide dynamic range and evtremely high sensitivity using feed-forward auto-bias adjustment. IEEE J. Solid-State Circuits 30(9), 991–997 (1995)ADSCrossRefGoogle Scholar
  220. 220.
    M. Nakamura, N. Ishihara, Y. Akazawa, A 156-Mb/s CMOS optical receiver burst-mode transmission. IEEE J. Solid-State Circuits 33(8), 1179–1187 (1998)ADSCrossRefGoogle Scholar
  221. 221.
    M. Nakamura, N. Ishihara, 1.2 V, 35 mW CMOS optical transceiver ICs for 50 Mbit/s burst-mode communication. Electron. Lett. 35(5), 394–395 (1999)CrossRefGoogle Scholar
  222. 222.
    K. Phang, D.A. Johns, A 1 V 1 mW front-end with on-chip dynamic gate biasing for a 75 Mb/s optical receiver, in ISSCC (2001), pp. 218–219Google Scholar
  223. 223.
    V. Peluso, P. Vancorenland, M. Steyaert, W. Sansen, 900 mV differentail class AB OTA for switched opamp applications. Electron. Lett. 33(17), 1455–1456 (1997)CrossRefGoogle Scholar
  224. 224.
    J. Wilson, J.F.B. Hawkes, Optoelectronics (Prentice Hall, New York, 1989), p. 310Google Scholar
  225. 225.
    X. D. Wu, R.A. Street, R. Weisfield, S. Ready, S. Nelson, Page sized a-Si:H two-dimensional array as imaging devices, in Proceedings of 4th International Conference on Solid-State and Integrated-Circuit Technology (1995), pp. 724–726Google Scholar
  226. 226.
    B. Sklar, Digital Communications: Fundamentals and Applications (Prentice Hall, London, 2001)zbMATHGoogle Scholar
  227. 227.
    ITU-T, G.975.1: forward error correction for high bit-rate DWDM submarine systems, in Telecommunication Standardization Sector (2004)Google Scholar
  228. 228.
    D. O’Brien, R. Turnbull, H.L. Minh, G. Faulkner, O. Bouchet, P. Porcon, M.E. Tabach, E. Gueutier, M. Wolf, L. Grobe, J. Li, High-speed optical wireless demonstrators: conclusions and future directions. J. Light. Technol. 30(13), 2181–2187 (2012)ADSCrossRefGoogle Scholar
  229. 229.
    E. Fisher, I. Underwood, R. Henderson, A reconfigurable single-photon counting integrating receiver for optical communications. IEEE J. Solid-State Circuits 48(7), 1638–1650 (2013)ADSCrossRefGoogle Scholar
  230. 230.
    B. Steindl, M. Hofbauer, K. Schneider-Hornstein, P. Brandl, H. Zimmermann, Single-photon avalanche photodiode based fiber optical receiver up to 200 Mb/s. J. Sel. Top. Quantum Electron. 24(2), 3801308 (2018)CrossRefGoogle Scholar
  231. 231.
    R. Enne, B. Steindl, M. Hofbauer, H. Zimmermann, Fast cascoded quenching circuit for decreasing afterpulsing effects in 0.35 \(\upmu \)m CMOS. IEEE Solid-State Circuits Lett. 1(3), 62–65 (2018)CrossRefGoogle Scholar
  232. 232.
    B. Goll, M. Hofbauer, B. Steindl, H. Zimmermann, A fully integrated SPAD-based CMOS data-receiver with a sensitivity of -64 dBm at 20 Mb/s. IEEE Solid-State Circuits Lett. 1(1), 2–5 (2018)CrossRefGoogle Scholar
  233. 233.
    M.J. McCullagh, D.R. Wisely, 155 Mbit/s optical wireless link using a bootstrapped silicon APD receiver. IET Electron. Lett. 30(5), 430–432 (1994)CrossRefGoogle Scholar
  234. 234.
    A.L. Lentine, K.W. Goossen, J.A. Walker, J.E. Cunningham, W.Y. Jan, T.K. Woodward, A.V. Krishnamoorthy, B.J. Tseng, S.P. Hui, R.E. Leibenguth, L.M.F. Chirovsky, R.A. Novotny, D.B. Buchholz, R.L. Morrison, Optoelectronic VLSI switching chip with greater than 1 Tbit/s potential optical I/O bandwidth. Electron. Lett. 33(10), 894–895 (1997)CrossRefGoogle Scholar
  235. 235.
    A.V. Krishnamoorthy, R.G. Rozier, T.K. Woodward, P. Chandramani, K.W. Goossen, B.J. Tseng, J.A. Walker, W.Y. Jan, J.E. Cunningham, Triggered receivers for optoelectronic VLSI. Electron. Lett. 36(3), 249–250 (2000)CrossRefGoogle Scholar
  236. 236.
    H.H. Kim, R.G. Swartz, Y. Ota, T.K. Woodward, M.D. Feuer, W.L. Wilson, Prospects for silicon monolithic opto-electronics with polymer light emitting diodes. IEEE J. Light. Technol. 12(12), 2114–2121 (1994)ADSCrossRefGoogle Scholar
  237. 237.
    K.G. Moerschel, T.Y. Chiu, W.A. Possanza, K.S. Lau, R.G. Swartz, R.A. Mantz, T.Y.M. Liu, K.F. Lee, V.D. Archer, G.R. Hower, G.T. Mazsa, R.E. Carsia, J.A. Pavlo, M.P. Ling, J.L. Dolcin, F.M. Erceg, J.J. Egan, C.J. Fassl, J.T. Glick, M.A. Prozonic, BEST: a BiCMOS-compatible super-self-aligned ECL technology, in IEEE Custom Integrated Circuits Conference (1990), pp. 18.3.1–18.3.4Google Scholar
  238. 238.
    D. Chitnis, S. Collins, A SPAD-based photon detecting system for optical communications. J. Light. Technol. 32, 2028–2034 (2014)CrossRefGoogle Scholar
  239. 239.
    S. Radovanovic, A.J. Annema, B. Nauta, A 3-Gb/s optical detector in standard CMOS for 850-nm optical communication. IEEE J. Solid-State Circuits 40(8), 1706–1717 (2005)ADSCrossRefGoogle Scholar
  240. 240.
    F. Tavernier, M. Steyaert, High-speed optical receivers with integrated photodiode in 130 nm CMOS. IEEE J. Solid-State Circuits 44(10), 2856–2867 (2009)ADSCrossRefGoogle Scholar
  241. 241.
    S.H. Huang, W.Z. Chen, Y.W. Chang, Y.T. Huang, A 10-Gb/s OEIC with meshed spatially modulated photodetector in 0.18-\(\upmu \)m CMOS technology. IEEE J. Solid-State Circuits 46(5), 1158–1169 (2011)ADSCrossRefGoogle Scholar
  242. 242.
    J. Leeb, K. Schneider, H. Zimmermann, A 380MHz two-stage OEIC for the use in DVD pickup units, in Proceedings IEEE International Symposium on Consumer Electronics (2004), pp. 381–384Google Scholar
  243. 243.
    R. Swoboda, J. Knorr, H. Zimmermann, A 2.4GHz-bandwidth OEIC with voltage-up-converter, in Proceedings of European Solid-State Circuits Conference (2004), pp. 223–226,Google Scholar
  244. 244.
    R. Swoboda, H. Zimmermann, 11Gb/s monolithically integrated silicon optical receiver for 850nm wavelength, in Proceedings of IEEE International Solid-State Circuits Conference (ISSCC) (2006), pp. 240–241Google Scholar
  245. 245.
    M. Atef, H. Zimmermann, Optoelectronic Circuits in Nanometer CMOS Technology (Springer, Switzerland, 2016)CrossRefGoogle Scholar
  246. 246.
    T. Ringbeck, R. Schwarte, B. Buxbaum, Introduction of a new opto-electrical phase locked loop in CMOS technology, the PMD-PLL. Proc. SPIE 3850, 108–115 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.EMCETechnische Universität WienViennaAustria

Personalised recommendations