Design of Integrated Optical Receiver Circuits

  • Horst ZimmermannEmail author
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 13)


Most of the optoelectronic integrated circuits (OEICs) described in this book are analog circuits. We, therefore, will restrict ourselves to the design of analog integrated circuits. The exclusion of the design of digital integrated circuits, furthermore, seems to be justified because there are many books describing this topic (for instance [1, 2, 3]). The design of analog integrated circuits is, for instance, described in [4]. It will be, therefore, sufficient to give here an overview on the aspects being most relevant for the design of analog OEICs. Since photocurrents have to be converted to signal voltages in most applications, the transimpedance amplifier will be discussed in some detail, especially with respect to its implementation in OEICs. A new \(\pi \) model for such a transimpedance amplifier also will be introduced. Furthermore, the basics of electronic noise and sensitivity of optical receivers are applied to point out the possibilities of silicon OEICs. The Poisson statistics and the quantum limit are added, since they allow to eliminate the electronic noise with SPAD receivers, which will be described in Chap.  6.


  1. 1.
    J.M. Rabaey, Digital Integrated Circuits: A Design Perspective (Prentice Hall, New York, 1996)Google Scholar
  2. 2.
    S.-M. Kang, Y. Leblebici, CMOS Digital Integrated Circuits: Analysis and Design (McGraw-Hill, New York, 1996)Google Scholar
  3. 3.
    T.A. DeMassa, Z. Ciccone, Digital Integrated Circuits (Wiley, New York, 1996)Google Scholar
  4. 4.
    K.R. Laker, W.M.C. Sansen, Design of Analog Integrated Circuits and Systems (McGraw-Hill, New York, 1994)Google Scholar
  5. 5.
    BSIM3v3 manual, (Dept. Electrical Engineering and Computer Sciences, University of California, Berkely, CA 94720, 1995)Google Scholar
  6. 6.
    H. Shichman, D. Hodges, Modelling and simulation of insulated-gate field-effect transistor switching circuits. IEEE J. Solid-State Circuits 3(3), 285–289 (1968)ADSCrossRefGoogle Scholar
  7. 7.
    S. Liu, L.W. Nagel, Small-signal MOSFET models for analog circuit design. IEEE J. Solid-State Circuits 17(6), 983–998 (1982)ADSCrossRefGoogle Scholar
  8. 8.
    P.E. Allen, D.R. Holberg, CMOS Analog Circuit Design (Holt, Rinehart, and Winston, New York, 1987)Google Scholar
  9. 9.
    P.R. Gray, R.G. Meyer, Analysis and Design of Analog Integrated Circuits (Wiley, New York, 1993), p. 39Google Scholar
  10. 10.
    SUPREM-3 manual (Technology Modeling Association, Inc., Palo Alto, CA, 1994)Google Scholar
  11. 11.
    TSUPREM-4 manual, (Technology Modeling Association, Inc., Palo Alto, CA, 1994)Google Scholar
  12. 12.
    MEDICI manual, (Technology Modeling Association Inc., Palo Alto, CA, 1994)Google Scholar
  13. 13.
    H. Zimmermann, Integrated Silicon Optoelectronics (Springer, Berlin, Heidelberg, 2000)CrossRefGoogle Scholar
  14. 14.
    P. Hoppe, Übertragungsverhalten Analoger Schaltungen (B. G. Teubner, Stuttgart, 1994), p. 161Google Scholar
  15. 15.
    K. Kieschnick, H. Zimmermann, High-sensitivity BiCMOS OEIC for optical storage systems. IEEE J. Solid-State Circuits 38(4), 579–584 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    K. Kieschnick, H. Zimmermann, P. Seegebrecht, BiCMOS OEIC with enhanced sensitivity for DVD systems, in Proceeding of the 27th European Solid-State Circuits Conference (ESSCIRC) (2001), pp. 184–187Google Scholar
  17. 17.
    H. Zimmermann, K. Kieschnick, M. Heise, H. Pless, High-bandwidth BiCMOS OEIC for optical storage systems, in IEEE International Solid-State Circuits Conference (1999), pp. 384–385Google Scholar
  18. 18.
    J. Knorr, H. Zimmermann, A transmission-line approach for modeling feedback resistors in integrated transimpedance amplifiers. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 50(9), 1192–1195 (2003)CrossRefGoogle Scholar
  19. 19.
    P.P. Sofiriadis, Y. Tsividis, Integrators using a single distributed RC element. IEEE Symp. Circuits Syst. (ISCAS) 2, 21–24 (2002)Google Scholar
  20. 20.
    X. Qinwei, P. Mazumder, Efficient macromodeling for on-chip interconnects, in Proceedings of ASP-DAC 2002: 7th Asia and South Pacific and the 15th International Conference on VLSI Design (Design Automation Conference) (2002), pp. 561–566Google Scholar
  21. 21.
    J. Qian, S. Pullela, L. Pillage, Modelling the effective capacitance for the RC interconnect of CMOS gates. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 13(12), 1526–1535 (1994)CrossRefGoogle Scholar
  22. 22.
    K. Janchitrapongvej, V. Kawejan, S. Seatia, C. Benjangkaprasert, P. Tangtisanon, O. Saingaroon, Capacitive double layers uniformly distributed RC line and its applications to active filters. Proc. TENCON 2, 23–25 (2000)Google Scholar
  23. 23.
    R. Mongia, I. Bahl, P. Bhartia, RF and Microwave Coupled-Line Circuits (Artech House Inc, Norwood, 1999), pp. 65–74 and 90–97Google Scholar
  24. 24.
    G. Gonzalez, Microwave Transistor Amplifiers (Prentice Hall, Englewood Cliffs, 1984), pp. 4–25Google Scholar
  25. 25.
    R.C. Jaeger, Microelectronic Circuit Design (McGraw-Hill, New York, 1997), p. 993Google Scholar
  26. 26.
    K.J. Ebeling, Integrated Optoelectronics (Springer, Berlin, 1993)CrossRefGoogle Scholar
  27. 27.
    P.R. Gray, R.G. Meyer, Analysis and Design of Analog Integrated Circuits (Wiley, New York, 1993)Google Scholar
  28. 28.
    K. Schneider, H. Zimmermann, Design of low-noise transimpedance frontends for systems-on-a-chip, in Proceeding of the Austrochip (2001), pp. 115–118Google Scholar
  29. 29.
    F.A. Haigh, Handbook of the Poisson Distribution (Wiley, New York, 1967)Google Scholar
  30. 30.
    B. Sklar, Digital Communications: Fundamentals and Applications (Prentice Hall, 2001)Google Scholar
  31. 31.
    ITU-T, G.975.1: Forward error correction for high bit-rate DWDM submarine systems, Telecommunication Standardization Sector (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.EMCETechnische Universität WienViennaAustria

Personalised recommendations