Advertisement

Integrated Silicon Photodetectors

  • Horst ZimmermannEmail author
Chapter
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 13)

Abstract

In this chapter the bipolar, CMOS, and BiCMOS process technologies are described. Photodetectors which are produced in these technologies without process modifications and their properties are introduced. Furthermore, the possible improvements of photodetectors resulting from small substrate and process modifications are discussed. CMOS is the economically most important technology. The section on integrated photodetectors in CMOS technology, therefore, is more comprehensive than the sections on photodetectors in bipolar and BiCMOS technologies. Within the CMOS section, the sophisticated spatially-modulated-light (SML) detector suppressing slow carrier diffusion effects in standard CMOS will be described. Furthermore, the photonic mixer device (PMD) being relevant for future 3D cameras on a chip will be discussed. In addition, the innovative integration of vertical PIN photodiodes will be highlighted, since they allow a considerable improvement of the speed of CMOS OEICs. Avalanche photodiodes and single-photon avalanche diodes are explained. Triple-well processes are explained with respect of their isolation capabilities. Furthermore, image sensors using charge-coupled-devices and active pixel image sensors will be described in some detail because of their economical importance. Within the BiCMOS section, the exploitation of double photodiodes will be mentioned as another innovation for high-speed OEICs and OPTO-ASICs in standard technology. With some process modifications, a very fast vertical PIN photodiode was realized in BiCMOS technology.

References

  1. 1.
    Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, vol. 17c (Springer, Berlin, 1984), p. 474Google Scholar
  2. 2.
    M. Takagi, K. Nakayama, C. Terada, H. Kamoka, in Proceedings of the 4th Conference on Solid-State Devices, vol. 42(Suppl.) (Japan Society of Applied Physics, 1973), p. 101Google Scholar
  3. 3.
    D.D. Tang, T.H. Ning, R.D. Isaac, G.C. Feth, S.K. Wiedmann, H.-N. Yu, Subnanosecond self-aligned \(I^2L\)/MTL circuits. IEEE J. Solid-Sate Circuits 15(4), 444–449 (1980)ADSCrossRefGoogle Scholar
  4. 4.
    E.F. Labuda, J.T. Clemens, Integrated circuit technology, in Encyclopedia of Chemical Technology, ed. by R.E. Kirk, D.F. Othmer (Wiley, New York, 1980)Google Scholar
  5. 5.
    J.A. Appels, E. Kooi, M.M. Paffen, J.J.H. Schlorje, W.H.C.G. Verkuylen, Local oxidation of silicon and its application in semiconductor technology. Philips Res. Rep. 25, 118 (1970)Google Scholar
  6. 6.
    M. Grossman, Recessed-oxide isolation hikes IBM’s LSI density and speed. Electron Des. 12(6), 26–28 (1979)Google Scholar
  7. 7.
    R.J. Blumberg, S. Brenner, A 1500 gate, random logic, large-scale integrated (LSI) masterslice. IEEE J. Solid-State Circuits 14(5), 818–822 (1979)ADSCrossRefGoogle Scholar
  8. 8.
    D.D. Tang, P.M. Soloman, T.H. Ning, R.D. Issac, R.E. Burger, 1.25-\(\upmu \)m deep-groove-isolated self-aligned bipolar circuits. IEEE J. Solid-Sate Circuits 17(5), 925–931 (1982)ADSCrossRefGoogle Scholar
  9. 9.
    A. Hayasaka, Y. Takami, M. Kawamura, K. Ogiue, S. Ohwaki, U-groove isolation technique for high speed bipolar VLSI’s, in IEDM Digest Technical Papers (1982), pp. 62–65Google Scholar
  10. 10.
    H. Goto, T. Takada, R. Abe, Y. Kawabe, K. Oami, M. Tanaka, An isolation technology for high performance bipolar memories: IOP-II, in IEDM Digest Technical Papers (1982), pp. 58–61Google Scholar
  11. 11.
    M. Yamamoto, M. Kubo, K. Nakao, Si-OEIC with a built-in PIN-photodiode. IEEE Trans. Electron Devices 42(1), 58–63 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    H.-M. Rein, R. Ranfft, Integrierte Bipolarschaltungen (Springer, Berlin, 1987), p. 50Google Scholar
  13. 13.
    H.H. Kim, R.G. Swartz, Y. Ota, T.K. Woodward, M.D. Feuer, W.L. Wilson, Prospects for silicon monolithic opto-electronics with polymer light emitting diodes. IEEE J. Light. Technol. 12(12), 2114–2121 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    J. Popp, H.v. Philipsborn, 10 Gbit/s on-chip photodetection with self-aligned silicon bipolar transistors, in ESSDERC (1990), pp. 571–574Google Scholar
  15. 15.
    J. Wieland, H. Duran, A. Felder, Two-channel 5 Gbit/s silicon bipolar monolithic receiver for parallel optical interconnects. Electron. Lett. 30(4), 358 (1994)CrossRefGoogle Scholar
  16. 16.
    H. Kabza, K. Ehinger, T.F. Meister, H.-W. Meul, P. Weger, I. Kerner, M. Miura-Mattausch, R. Schreiter, D. Hartwig, M. Reisch, M. Ohnemus, R. Köpl, J. Weng, H. Klose, H. Schaber, L. Treitinger, A 1-\(\upmu \)m polysilicon self-aligned bipolar process for low-power high-speed integrated circuits. IEEE Electron Device Lett. 10(8), 344–346 (1989)ADSCrossRefGoogle Scholar
  17. 17.
    J. Wieland, H. Melchior, M.Q. Kearley, C.R. Morris, A.M. Moseley, M.J. Goodwin, R.C. Goodfellow, Optical receiver array in silicon bipolar technology with selfaligned, low parasitic III/V detectors for DC-1 Gbit/s parallel links. Electron. Lett. 24(27), 2211–2213 (1994)Google Scholar
  18. 18.
    G. Winstel, C. Weyrich, Optoelektronik II (Springer, Berlin, 1986), p. 97CrossRefGoogle Scholar
  19. 19.
    J. Lindemayer, C.Y. Wrigley, Beta cuttoff frequencies of junction transistors. Proc. IRE 50, 194–198 (1962)CrossRefGoogle Scholar
  20. 20.
    D. Bolliger, P. Malcovati, A. Häberli, H. Baltes, P. Sarro, F. Maloberti, Integrated ultraviolet sensor system with on-chip 1 G\(\Omega \) transimpedance amplifier, in ISSCC (1996), pp. 328–329Google Scholar
  21. 21.
    D. Bolliger, R.S. Popovic, H. Baltes, Integration of a smart selective UV detector, in Transducers’95 and Eurosensors IX, Digest of Technical Papers 2 (8th International Conference on Solid-State Sensors and Actuators) (1995), pp. 144–147Google Scholar
  22. 22.
    L.K. Nanver, E.J.G. Goudena, H.W. van Zeijl, DIMES-01, a baseline BIFET process for smart sensor experimentation. Sens. Actuators A 36, 139–147 (1993)CrossRefGoogle Scholar
  23. 23.
    H. Zimmermann, Improved CMOS-integrated photodiodes and their application in OEICs, in IEEE International Workshop on High Performance Electron Devices for Microwave & Optoelectronic Applications (1997), pp. 346–351Google Scholar
  24. 24.
    C.T. Kirk, A theory of transistor cutoff frequency \((f_{\rm T})\) falloff at high current densities. IRE Trans. Electron Devices ED–9, 164–174 (1962)ADSCrossRefGoogle Scholar
  25. 25.
    L.A. Hahn, The saturation characteristics of high-voltage transistors. Proc. IEEE 55(8), 1384–1388 (1967)CrossRefGoogle Scholar
  26. 26.
    J.R.A. Beale, J.A.G. Slatter, The equivalent circuit of a transistor with a lightly doped collector operating in saturation. Solid-State Electron. 11, 241–252 (1968)ADSCrossRefGoogle Scholar
  27. 27.
    J.A. Pals, H.C. de Graaff, On the behaviour of the base-collector junction of a transistor at high collector current densities. Philips Res. Rep. 24, 53–69 (1969)Google Scholar
  28. 28.
    R.J. Whittier, D.A. Tremere, Current gain and cutoff frequency falloff at high currents. IEEE Trans. Electron Devices ED–16(1), 39–57 (1969)ADSCrossRefGoogle Scholar
  29. 29.
    H.C. Poon, H.K. Gummel, Modeling of emitter capacitance. Proc. IRE 57, 2181–2182 (1969)Google Scholar
  30. 30.
    H.C. de Graaff, Collector models for bipolar transistors. Solid-State Electron. 16, 587–600 (1973)ADSCrossRefGoogle Scholar
  31. 31.
    G. Rey, J.P. Bailbe, Some aspects of current gain variations in bipolar transistors. Solid-State Electron. 17, 1045–1057 (1974)ADSCrossRefGoogle Scholar
  32. 32.
    T.H. Ning, D.D. Tang, P.M. Solomon, Scaling properties of bipolar devices, IEEE International Electron Device Meeting (Washington, D.C., 1980), pp. 61–64Google Scholar
  33. 33.
    R. Swoboda, H. Zimmermann, A 2.5-Gb/s receiver OEIC in 0.6-\(\upmu \)m BiCMOS technology. IEEE Photonics Technol. Lett. 16(7), 1730–1732 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    G. Schumicki, P. Seegebrecht, Prozesstechnologie (Springer, Berlin, 1991), pp. 370–380CrossRefGoogle Scholar
  35. 35.
    T. Hori, Gate Dielectrics and MOS ULSIs (Springer, New York, 1997)CrossRefGoogle Scholar
  36. 36.
    L.C. Parrillo, R.S. Payne, R.E. Davies, G.W. Rentlinger, R.L. Field, Twin-tub CMOS - a technology for VLSI circuits, in IEDM Digest Technical Papers (1980), pp. 752–755Google Scholar
  37. 37.
    C.-Y. Lu, J.J. Sung, H.C. Kirsch, N.-S. Tsai, R. Liu, A.S. Manocha, S.J. Hillenius, High-perfomance salicide shallow-junction CMOS devices for submicrometer VLSI application in twin-tub VI. IEEE Trans. Electron Devices 36(11), 2530–2536 (1989)ADSCrossRefGoogle Scholar
  38. 38.
    R.A. Chapman, C.C. Wei, D.A. Bell, S. Aur, G.A. Brown, R.A. Haken, 0.5 micron CMOS for high performance at 3.3 V, in IEDM Digest Technical Papers (1988), pp. 52–55Google Scholar
  39. 39.
    B. Davari, W.H. Chang, M. Wordeman, C.S. Oh, Y. Taur, K.E. Petrillo, D. Moy, J.J. Bucchignano, H.Y. Ng, M.G. Rosenfield, F.J. Hohn, M. D. Rodriguez, A high performance 0.25 \(\upmu \)m CMOS technology, in IEDM Digest Technical Papers (1988), pp. 56–59Google Scholar
  40. 40.
    Y. Ogasahara, M. Hashimoto, T. Kanamoto, T. Onoye, Supply noise suppression by triple-well structure. IEEE Trans. VLSI Syst. 21(4), 781–785 (2013)CrossRefGoogle Scholar
  41. 41.
    W. Muth, Matrix method for latch-up free demonstration in a triple-well bulk-silicon technology. IEEE Trans. Nucl. Sci. 39(3), 396–400 (1992)ADSCrossRefGoogle Scholar
  42. 42.
    E. Braß, U. Hilleringmann, K. Schumacher, System integration of optical devices and analog CMOS amplifiers. IEEE J. Solid-State Circuits 29(8), 1006–1010 (1994)ADSCrossRefGoogle Scholar
  43. 43.
    U. Hilleringmann, K. Goser, Optoelectronic system integration on silicon: waveguides, photodetectors, and VLSI CMOS circuits on one chip. IEEE Trans. Electron Devices 42(5), 841–846 (1995)ADSCrossRefGoogle Scholar
  44. 44.
    E. Fullin, G. Voirin, M. Chevroulet, A. Lagos, J.-M. Moret, CMOS-based technology for integrated optoelectronics: a modular approach, in IEDM Digest Technical Papers (1994), pp. 527–530Google Scholar
  45. 45.
    R. Kauert, W. Budde, A. Kalz, A monolithic field segment photo sensor system. IEEE J. Solid-State Circuits 30(7), 807–811 (1995)ADSCrossRefGoogle Scholar
  46. 46.
    P. Lee, A. Simoni, A. Sartori, G. Torelli, A photosensor array for spectrophotometry. Sens. Actuators A 46–47, 449–452 (1995)CrossRefGoogle Scholar
  47. 47.
    H. Zimmermann, K. Kieschnick, T. Heide, A. Ghazi, Integrated high-speed, high-responsivity photodiodes in CMOS and BiCMOS technology, in Proceedings of the 29th European Solid-State Device Conference (ESSDERC) (1999), pp. 332–335Google Scholar
  48. 48.
    M.L. Simpson, M.N. Ericson, G.E. Jellison, W.B. Dress, A.L. Wintenberg, M.B. Bobrek, Application specific spectral response with CMOS compatible photodiodes. IEEE Trans. Electron Devices 46(5), 905–913 (1999)ADSCrossRefGoogle Scholar
  49. 49.
    T.K. Woodward, A.V. Krishnamoorthy, 1 Gbit/s CMOS photoreceiver with integrated detector operating at 850 nm. Electron. Lett. 34(12), 1252–1253 (1998)CrossRefGoogle Scholar
  50. 50.
    C. Rooman, D. Coppee, M. Kuijk, Asynchronous 250-Mb/s optical receivers with integrated detector in standard CMOS technology for optocoupler applications. IEEE J. Solid-State Circuits 35(7), 953–957 (2000)ADSCrossRefGoogle Scholar
  51. 51.
    M. Kuijk, D. Coppee, R. Vounckx, Spatially modulated light detector in CMOS with sense-amplifier receiver operating at 180 Mb/s for optical data link applications and parallel optical interconnects between chips. IEEE J. Sel. Top. Quantum Electron. 4(6), 1040–1045 (1998)ADSCrossRefGoogle Scholar
  52. 52.
    L.D. Garrett, J. Qi, C.L. Schow, J.C. Campbell, A silicon-based integrated NMOS-p-i-n photoreceiver. IEEE Trans. Electron Devices 43(3), 411–416 (1996)ADSCrossRefGoogle Scholar
  53. 53.
    S. He, L.D. Garrett, K.-H. Lee, J.C. Campbell, Monolithic integrated silicon NMOS PIN photoreceiver. Electron. Lett. 30(22), 1887–1888 (1994)CrossRefGoogle Scholar
  54. 54.
    S.M. Sze, VLSI Technology (McGraw-Hill, New York, 1988)Google Scholar
  55. 55.
    T. Hori, J. Hirase, Y. Odake, T. Yasui, Deep-submicrometer large-angle-tilt implanted drain (LATID) technology. IEEE Trans. Electron Devices 39(10), 2312–2324 (1992)ADSCrossRefGoogle Scholar
  56. 56.
    H. Zimmermann, Monolithic Bipolar-, CMOS-, and BiCMOS-receiver OEICs, in Proceedings of the International Semiconductor Conference (CAS’96) (Sinaia, Romania, 1996), pp. 31–40Google Scholar
  57. 57.
    H. Zimmermann, T. Heide, A. Ghazi, Monolithic high-speed CMOS-photoreceiver. IEEE Photonics Technol. Lett. 11(2), 254–256 (1999)ADSCrossRefGoogle Scholar
  58. 58.
    H. Zimmermann, U. Müller, R. Buchner, P. Seegebrecht, Optoelectronic receiver circuits in CMOS-technology, Mikroelektronik’97, GMM-Fachbericht 17 (VDE-Verlag, Berlin, Offenbach, 1997), pp. 195–202Google Scholar
  59. 59.
    H. Zimmermann, T. Heide, A. Ghazi, K. Kieschnick, PIN-CMOS-receivers for optical interconnects, in Ext. Abstr. 2nd IEEE Workshop on Signal Propagation on Interconnects, Travemünde, Germany (1998), pp. 88–89Google Scholar
  60. 60.
    H. Zimmermann, A. Ghazi, T. Heide, R. Popp, R. Buchner, in Proceedings of the 49th Electronic Components and Technology Conference (ECTC) (1999), pp. 1030–1035Google Scholar
  61. 61.
    R.A. Chapman, R.A. Haken, D.A. Bell, C.C. Wei, R.H. Havemann, T.E. Tang, T.C. Holloway, R.J. Gale, An 0.8 \(\upmu \)m CMOS technology for high performance logic applications, in IEDM Digest Technical Papers (1987), pp. 362–365Google Scholar
  62. 62.
    P. Pavan, G. Spiazzi, E. Zanoni, M. Muschitiello, M. Cecchetti, Latch-up DC triggering and holding characteristics of n-well, twin-tub and epitaxial CMOS technologies. IEE Proc.-G 138(5), 605–612 (1991)Google Scholar
  63. 63.
    H. Zimmermann, T. Heide, A. Ghazi, P. Seegebrecht, PIN-CMOS-receivers for optical interconnects, in Signal Propagation on Interconnects, vol. II, ed. by H. Grabinski (Kluwer, Amsterdam, 1999)Google Scholar
  64. 64.
    A. Ghazi, T. Heide, H. Zimmermann, PIN CMOS OEIC for DVD systems, in Proceedings of the 43rd International Scientific Colloquium, TU Ilmena, vol. 2 (Germany, 1998), pp. 380–385Google Scholar
  65. 65.
    H. Zimmermann, Integrated Silicon Optoelectronics (Springer, Berlin, 2000)CrossRefGoogle Scholar
  66. 66.
    P. Brandl, S. Schidl, H. Zimmermann, PIN photodiode optoelectronic integrated receiver used for 3-Gb/s free-space optical communication. IEEE J. Sel. Top. Quantum Electron. 20(6), 6000510 (2014)CrossRefGoogle Scholar
  67. 67.
    M. Davidovic, T. Wimbauer, H. Zimmermann, PIN photodiode in 0.15 \(\upmu \)m CMOS. IET Electron. Lett. 50(17), 1229–1231 (2014)CrossRefGoogle Scholar
  68. 68.
    W.S. Boyle, G.E. Smith, Charge coupled semiconductor devices. Bell Syst. Tech. 49(4), 587–593 (1970)CrossRefGoogle Scholar
  69. 69.
    E.G. Stevens, B.C. Burkey, D.N. Nicols, Y.S. Yee, D.L. Losee, T.-H. Lee, T.J. Tredwell, R.P. Khosla, A 1-megapixel, progressive-scan image sensor with antiblooming control and lag-free operation. IEEE Trans. Electron Devices 38(5), 981–988 (1991)ADSCrossRefGoogle Scholar
  70. 70.
    T. Kuriyama, H. Kodama, T. Kozono, Y. Kitahama, Y. Morita, Y. Hiroshima, A 1/3-in 270000 pixel CCD image sensor. IEEE Trans. Electron Devices 38(5), 949–953 (1991)ADSCrossRefGoogle Scholar
  71. 71.
    S. Kawai, N. Mutoh, N. Teranishi, Thermionic-emission-based barrier height analysis for precise estimation of charge handling capacity in CCD registers. IEEE Trans. Electron Devices 44(10), 1588–1592 (1997)ADSCrossRefGoogle Scholar
  72. 72.
    J.P. Lavine, E.K. Banghart, The effect of potential obstacles on charge transfer in image sensors. IEEE Trans. Electron Devices 44(10), 1593–1598 (1997)ADSCrossRefGoogle Scholar
  73. 73.
    R. Miyagawa, T. Kanade, CCD-based range-finding sensor. IEEE Trans. Electron Devices 44(10), 1648–1652 (1997)ADSCrossRefGoogle Scholar
  74. 74.
    T. Spirig, M. Marley, P. Seitz, The multitap lock-in CCD with offset subtraction. IEEE Trans. Electron Devices 44(10), 1643–1647 (1997)ADSCrossRefGoogle Scholar
  75. 75.
    B.E. Burke, J.A. Gregory, M.W. Bautz, G.Y. Prigozhin, S.E. Kissel, B.B. Kosiki, A.H. Loomis, D.J. Young, Soft-X-ray CCD imagers for AXAF. IEEE Trans. Electron Devices 44(10), 1633–1642 (1997)ADSCrossRefGoogle Scholar
  76. 76.
    K. Itakura, T. Nobusada, Y. Saitou, N. Kokusenya, R. Nagayoshi, M. Ozaki, Y. Sugawara, K. Mitani, Y. Fujita, A 2/3-in 2.0 M-pixel CCD imager with an advanced M-FIT architecture capable of progressive scan. IEEE Trans. Electron Devices 44(10), 1625–1632 (1997)ADSCrossRefGoogle Scholar
  77. 77.
    K. Tachikawa, T. Umeda, Y. Oda, T. Kuroda, Device design with automatic simulation system for basic CCD characteristics. IEEE Trans. Electron Devices 44(10), 1611–1616 (1997)ADSCrossRefGoogle Scholar
  78. 78.
    T. Yamada, Y. Kawakami, T. Nakano, N. Mutoh, K. Orihara, N. Teranishi, Driving voltage reduction in a two-phase CCD by suppression of potential pockets in inter-electrode gaps systems. IEEE Trans. Electron Devices 44(10), 1580–1587 (1997)ADSCrossRefGoogle Scholar
  79. 79.
    B.E. Burke, R.K. Reich, J.A. Gregory, W.H. McGonagle, A.M. Waxman, E.D. Savoye, B.B. Kosiki, 640 \(\times \) 480 back-illuminated CCD imager with improved blooming control for night vision, in IEDM Digest Technical Papers (1998), pp. 33–36Google Scholar
  80. 80.
    J.T. Bosiers, A.C. Kleinman, A. van der Sijde, L. Korthout, D.W. Verbugt, H.L. Peek, E. Roks, A. Heringa, F.F. Vledder, P. Opmeer, A 2/3” 2-M pixel progressive scan FT-CCD for digital still camera applications, in IEDM Digest Technical Papers (1998), pp. 37–40Google Scholar
  81. 81.
    A. Tanabe, Y. Kudoh, Y. Kawakami, K. Masubuchi, S. Kawai, T. Yamada, M. Morimoto, K. Arai, K. Hatano, M. Furumiya, Y. Nakashiba, N. Mutoh, K. Orihara, N. Teranishi, Dynamic range improvement by narrow-channel effect suppression and smear reduction technologies in small pixel IT-CCD image sensors, in IEDM Digest Technical Papers (1998), pp. 41–44Google Scholar
  82. 82.
    H. Fiedler, K. Knupfer, Market overview: charge-coupled devices, in Sensors Update, vol. 1, ed. by H. Baltes, W. Göpel, J. Hesse (VCH, Weinheim, 1996), pp. 223–271Google Scholar
  83. 83.
    P. Seitz, K. Knop, Image sensors, in Sensors Update, vol. 2, ed. by H. Baltes, W. Göpel, J. Hesse (VCH, Weinheim, 1996), pp. 85–103Google Scholar
  84. 84.
    Y. Hagiwara, High-density and high-quality frame transfer CCD imager with very low smear, low dark current, and very high blue sensitivity. IEEE Trans. Electron Devices 43(12), 2122–2130 (1996)ADSCrossRefGoogle Scholar
  85. 85.
    J. Hynecek, Low-noise and high-speed charge detection in high-resolution CCD image sensors. IEEE Trans. Electron Devices 44(10), 1679–1688 (1997)ADSCrossRefGoogle Scholar
  86. 86.
    N. Tanaka, N. Nakamura, Y. Matsunaga, S. Manabe, H. Tango, O. Yoshida, A low driving voltage CCD with single layer electrode structure for area image sensor. IEEE Trans. Electron Devices 44(11), 1869–1874 (1997)ADSCrossRefGoogle Scholar
  87. 87.
    S.M. Sze, Physics of semiconductor devices (Wiley, New York, 1981), p. 412Google Scholar
  88. 88.
    R.H. Walden, R.H. Krambeck, R.J. Strain, J. McKenna, N.L. Schryer, G.E. Smith, The buried channel charge coupled device. Bell Syst. Tech. 51, 1635–1640 (1972)CrossRefGoogle Scholar
  89. 89.
    M.M. Blouke, J.R. Janesick, J.E. Hall, M.W. Cowens, P.J. May, 800 \(\times \) 800 charge coupled device image sensor. Opt. Eng. 22(5), 607–614 (1983)ADSCrossRefGoogle Scholar
  90. 90.
    Y. Ishihara, E. Oda, H. Tanigawa, A. Kohno, N. Teranishi, E.-I. Takeuchi, I. Akiyama, T. Kamata, Interline CCD image sensor with an antiblooming structure. IEEE Trans. Electron Devices 31(1), 83–88 (1984)ADSCrossRefGoogle Scholar
  91. 91.
    N. Teranishi, Y. Ishihara, Smear reduction in interline CCD image sensor. IEEE Trans. Electron Devices 34(5), 1052–1056 (1987)ADSCrossRefGoogle Scholar
  92. 92.
    E. Oda, K. Orihara, T. Tanaka, T. Kamata, Y. Ishihara, 1/2-in 768(H) \(\times \) 492(V) pixel CCD image sensor. IEEE Trans. Electron Devices 36(1), 46–53 (1989)ADSCrossRefGoogle Scholar
  93. 93.
    K. Knop, Image sensors, in Optical Sensors, ed. by W. Göpel, J. Hesse, J.N. Zemel (VCH, Weinheim, 1992), pp. 233–252Google Scholar
  94. 94.
    P. Centen, CCD on-chip amplifiers: noise performance versus MOS transistor dimensions. IEEE Trans. Electron Devices 38(5), 1206–1216 (1991)ADSCrossRefGoogle Scholar
  95. 95.
    J. Hojo, Y. Naito, H. Mori, K. Fujikawa, N. Kato, T. Wakayama, E. Komatsu, M. Itasaka, A 1/3-in 510(H) \(\times \) 492(V) CCD image sensor with mirror image function. IEEE Trans. Electron Devices 38(5), 954–959 (1991)ADSCrossRefGoogle Scholar
  96. 96.
    N. Mutoh, Simulation for 3-D optical and electrical analysis of CCD. IEEE Trans. Electron Devices 44(10), 1604–1610 (1997)ADSCrossRefGoogle Scholar
  97. 97.
    M. Yamagishi, M. Negishi, H. Yamada, T. Tsunakawa, K. Shinohara, T. Ishimaru, Y. Kamide, Y. Yamazaki, H. Abe, H. Kanbe, Y. Tomiya, K. Yonemoto, T. Iizuka, S. Nakamura, K. Harada, K. Wada, A 2 million pixel FIT-CCD image sensor for HDTV camera systems. IEEE Trans. Electron Devices 38(5), 976–980 (1991)ADSCrossRefGoogle Scholar
  98. 98.
    G. Williams, J. Janesick, Cameras with CCD’s capture new markets, Laser Focus World, Detector Handbook (1996), pp. S5–S9Google Scholar
  99. 99.
    A.L. Lattes, S.C. Munroe, M.M. Seaver, Ultrafast shallow-buried-channel CCD’s with built-in drift fields. IEEE Electron Device Lett. 12(2), 104–107 (1991)ADSCrossRefGoogle Scholar
  100. 100.
    T. Satoh, N. Mutoh, M. Furumiya, I. Murakami, S. Suwazono, C. Ogawa, K. Hatano, H. Utsumi, S. Kawai, K. Arai, M. Morimoto, K. Orihara, T. Tamura, N. Teranishi, Y. Hokari, Optical limitations to cell size reduction in IT-CCD image sensors. IEEE Trans. Electron Devices 44(10), 1599–1603 (1997)ADSCrossRefGoogle Scholar
  101. 101.
    R. Dawson, J. Preisig, J. Carnes, J. Pridgen, CMOS/buried-N-channel CCD compatible process for analog signal processing applications. RCA Rev. 38, 406–435 (1977)ADSGoogle Scholar
  102. 102.
    D. Ong, An all-implanted CCD/CMOS process. IEEE Trans. Electron Devices 28(1), 6–12 (1981)ADSCrossRefGoogle Scholar
  103. 103.
    E.R. Fossum, CMOS image sensors: electronic camera-on-a-chip. IEEE Trans. Electron Devices 44(10), 1689–1698 (1997)ADSCrossRefGoogle Scholar
  104. 104.
    A. Simoni, A. Sartori, M. Gottardi, A. Zorat, A digital vision sensor. Sens. Actuators A 46–47, 439–443 (1995)CrossRefGoogle Scholar
  105. 105.
    P. Noble, Self-scanned silicon image detector arrays. IEEE Trans. Electron Devices 15(4), 202–209 (1968)ADSCrossRefGoogle Scholar
  106. 106.
    F. Andoh, K. Taketoshi, J. Yamazaki, M. Sugawara, Y. Fujita, F. Mitani, Y. Matuzawa, K. Miyata, S. Araki, A 250000 pixel image sensor with FET amplification at each pixel for high-speed television cameras, in ISSCC Digest Technical Papers (1990), pp. 212–213Google Scholar
  107. 107.
    H. Kawashima, F. Andoh, N. Murata, K. Tanaka, M. Yamawaki, K. Taketoshi, A 1/4 inch format 250000 pixel amplifier MOS image sensor using CMOS process, in IEDM Digest Technical Papers (1993), pp. 575–578Google Scholar
  108. 108.
    M. Sugawara, H. Kawashima, F. Andoh, N. Murata, Y. Fujita, M. Yamawaki, An amplified MOS imager suited for image processing, in ISSCC Digest Technical Papers (1994), pp. 228–229Google Scholar
  109. 109.
    E. Oba, K. Mabuchi, Y. Iida, N. Nakamura, H. Miura, A 1/4 inch 330 k square pixel progressive scan CMOS active pixel image sensor, in ISSCC Digest Technical Papers (1997), pp. 180–181Google Scholar
  110. 110.
    C. Aw, B. Wooley, A 128 \(\times \) 128 pixel standard CMOS image sensor with electronic shutter. IEEE J. Solid-State Circuits 31(12), 1922–1930 (1996)ADSCrossRefGoogle Scholar
  111. 111.
    R.H. Nixon, S.E. Kemeny, B. Pain, C.O. Staller, E.R. Fossum, 256 \(\times \) 256 CMOS active pixel sensor camera-on-a-chip. IEEE J. Solid-State Circuits 31(12), 2046–2050 (1996)ADSCrossRefGoogle Scholar
  112. 112.
    R.H. Nixon, S.E. Kemeny, R.C. Gee, B. Pain, Q. Kim, E.R. Fossum, CMOS active pixel image sensors for highly integrated imaging systems. IEEE J. Solid-State Circuits 32(2 (Feb.)), 187–197 (1997)ADSCrossRefGoogle Scholar
  113. 113.
    O. Yadid-Pecht, E.R. Fossum, Wide intrascene dynamic range CMOS APS using dual sampling. IEEE Trans. Electron Devices 44(10), 1721–1723 (1997)ADSCrossRefGoogle Scholar
  114. 114.
    Z. Zhou, B. Pain, E.R. Fossum, CMOS active pixel sensor with on-chip successive approximation analog-to-digital converter. IEEE Trans. Electron Devices 44(10), 1759–1763 (1997)ADSCrossRefGoogle Scholar
  115. 115.
    Z. Zhou, B. Pain, E.R. Fossum, Frame-transfer CMOS active pixel sensor with pixel binning. IEEE Trans. Electron Devices 44(10), 1764–1768 (1997)ADSCrossRefGoogle Scholar
  116. 116.
    G. Yang, O. Yadid-Pecht, C. Wrigley, B. Pain, A snap-shot CMOS active pixel imager for low-noise, high-speed imaging, in IEDM Digest Technical Papers (1998), pp. 45–48Google Scholar
  117. 117.
    D. Scheffer, B. Dierickx, G. Meynants, Random addressable 2048 \(\times \) 2048 active pixel image sensor. IEEE Trans. Electron Devices 44(10), 1716–1720 (1997)ADSCrossRefGoogle Scholar
  118. 118.
    F. Pardo, B. Dierickx, D. Scheffer, CMOS foveated image sensor: signal scaling and small geometry effects. IEEE Trans. Electron Devices 44(10), 1731–1737 (1997)ADSCrossRefGoogle Scholar
  119. 119.
    A. Dickinson, B. Auckland, E.-S. Eid, D. Inglis, E.R. Fossum, A 256 \(\times \) 256 CMOS active pixel image sensor with motion detection, in ISSCC (1995), pp. 226–227Google Scholar
  120. 120.
    R.M. Guidash, T.-H. Lee, P.P.K. Lee, D.H. Sackett, C.I. Drowley, M.S. Swenson, L. Arbaugh, R. Hollstein, F. Shapiro, S. Domer, A 0.6 \(\upmu \)m CMOS pinned photodiode color imager technology, in IEDM Digest Technical Papers (1997), pp. 927–929Google Scholar
  121. 121.
    S. Mendis, S.E. Kemeny, E.R. Fossum, CMOS active pixel image sensor. IEEE Trans. Electron. Devices 41, 452–453 (1994)ADSCrossRefGoogle Scholar
  122. 122.
    M.-H. Chi, Technologies for high performance CMOS active pixel imaging system-on-a-chip, in Proceedings of the 5th International Conference on Solid-State and Integrated-Circuit Technology (1998), pp. 180–183Google Scholar
  123. 123.
    H. Totsuka, T. Tsuboi, T. Muto, D. Yoshida, Y. Matsuno, M. Ohmura, H. Takahashi, K. Sakurai, T. Ichikawa, H. Yuzurihara, S. Inoue, An APS-H-size 250 Mpixel CMOS image sensor using column single-slope ADCs with dual-gain amplifiers, in Proceedings IEEE International Solid-State Circuits Conference (2016), pp. 116–117Google Scholar
  124. 124.
    T. Toyama, K. Mishina, H. Tsuchiya, T. Ichikawa, H. Iwaki, Y. Gendai, H. Murakami, K. Takamiya, H. Shiroshita, Y. Muramatsu, T. Furusawa, A 17.7 Mpixel 120 fps CMOS image sensor with 34.8 Gb/s readout, in Proceedings IEEE International Solid-State Circuits Conference (2011), pp. 420–421Google Scholar
  125. 125.
    M.F. Snoeji, P. Donegan, A.J.P. Theuwissen, K.A.A. Makinwa, J.H. Huijsing, A CMOS image sensor with a column-level multiple-ramp single-slope ADC, in Proceedings IEEE International Solid-State Circuits Conference (2007), pp. 506–507Google Scholar
  126. 126.
    J. Bogaerts, R. Lafaille, J. Guo, B. Ceulemans, G. Meynants, N. Sarhangnejad, G. Arsinte, V. Statescu, S. van der Groen, 105\(\times \)65 mm\(^2\) 391 Mpixel CMOS image sensor with \(>\)78 dB dynamic range for airborne mapping applications, in Proceedings IEEE International Solid-State Circuits Conference (2016), pp. 114–115Google Scholar
  127. 127.
    J. Bosiers, E.-J.P. Manoury, W. Klaassens, H. Stoldt, R.L.J. Leenen, H. van Kuijk, H.L. Peek, W.T.F.M. de Laat, Recent developments on large-area CCDs for professional applications, in International Image Sensor Workshop (IISW) (2015)Google Scholar
  128. 128.
    T. Arai, T. Yasue, K. Kitamura, H. Shimamoto, T. Kosugi, S. Jun, S. Aoyama, M.-C. Hsu, Y. Yamashita, H. Sumi, S. Kawahito, A 1.1 \(\upmu \)m 33 Mpixel 240 fps 3D-stacked CMOS image sensor with 3-stage cyclic-based analog-to-digital converters, in Proceedings IEEE International Solid-State Circuits Conference (2016), pp. 126–127Google Scholar
  129. 129.
    C.C.-M. Liu, C.-H. Chang, H.-Y. Tu, C.Y.-P. Chao, F.-L. Hsueh, S.-Y. Chen, V. Hsu, J.-C. Liu, D.-N. Yaung, S.-G. Wuu, A peripheral switchable 3D stacked CMOS image sensor, in Proceedings Symposium on VLSI Circuits (2014), pp. 1–2Google Scholar
  130. 130.
    C.C.-M. Liu, M.M. Mhala, C.-H. Chang, H. Tu, P.-S. Chou, C. Chao, F.-L. Hsueh, A 1.5 V 33 Mpixel 3D-stacked CMOS image sensor with negative substrate bias, in Proceedings IEEE International Solid-State Circuits Conference (2016), pp. 124–125Google Scholar
  131. 131.
    K. Kitamura, T. Watabe, T. Sawamoto, T. Kosugi, T. Akahori, T. Iida, K. Isobe, T. Watanabe, H. Shimamoto, H. Ohtake, S. Aoyama, S. Kawahito, N. Egami, A 33 Megapixel 120 frames-per-second 2.5 W CMOS image sensor with column-parallel two-stage cyclic analog-to-digital converters. IEEE Trans. Electron Devices 59(12), 3426–3433 (2012)ADSCrossRefGoogle Scholar
  132. 132.
    T. Haruta, T. Nakajima, J. Hashizume, T. Umebayashi, H. Takahashi, K. Taniguchi, M. Kuroda, H. Sumihiro, K. Enoki, T. Yamasaki, K. Ikezawa, A. Kitahara, M. Zen, M. Oyama, H. Koga, H. Tsugawa, T. Ogita, T. Nagano, S. Takano, T. Nomoto, A 1/2.3inch 20 Mpixel 3-layer stackedCMOS image sensor with DRAM, in Proceedings IEEE International Solid-StateCircuits Conference (2017), pp. 76–77Google Scholar
  133. 133.
    N.A.W. Dutton, L. Parmesan, A.J. Holmes, L.A. Grant, R.K. Henderson, 320 \(\times \) 240 oversampled digital single photon counting image sensor, in Proceedings Symposium on VLSI Circuits (2014), pp. 147–148Google Scholar
  134. 134.
    M. Mori, Y. Sakata, M. Usudaa, S. Yamahira, S. Kasuga, Y. Hirose, Y. Kato, T. Tanaka, A 1280 \(\times \) 720 single-photon-detecting image sensor with 100 dB dynamic range using a sensitivity-boosting technique, in Proceedings IEEE International Solid-State Circuits Conference (2016), pp. 120–121Google Scholar
  135. 135.
    M. Kunii, K. Hasegawa, H. Oka, Y. Nakazawa, T. Takeshita, H. Kurihara, Performance of a high-resolution contact-type linear image sensor with a-Si:H/a-SiC: H heterojunction photodiodes. IEEE Trans. Electron Devices 36(12), 2877–2881 (1989)ADSCrossRefGoogle Scholar
  136. 136.
    H. Kakinuma, M. Sakamoto, Y. Kasuya, H. Sawai, Characterisitics of Cr Schottky amorphous silicon photodiodes and their application in linear image sensors. IEEE Trans. Electron Devices 37(1), 128–133 (1990)ADSCrossRefGoogle Scholar
  137. 137.
    L.E. Antonuk, J. Boudry, Y. El-Mohri, W. Huang, J. Siewerdsen, J. Yorkston, R.A. Street, A high-resolution, high frame rate flatpanel TFT array for digital X-Ray imaging, in SPIE, Physics of Medical Imaging vol. 2163 (1994), pp. 118–127Google Scholar
  138. 138.
    N.C. Bird, C.J. Curling, C. van Berkel, Large-area image sensing using amorphous silicon NIP diodes. Sens. Actuators 46–47, 444–448 (1995)CrossRefGoogle Scholar
  139. 139.
    X.D. Wu, R.A. Street, R. Weisfield, S. Ready, S. Nelson, Page sized a-Si:H two-dimensional array as imaging devices, in Proceedings of the 4th International Conference on Solid-State and Integrated-Circuit Technology (1995), pp. 724–726Google Scholar
  140. 140.
    E.D. Palik, Handbook of Optical Constants of Solids (Academic Press Inc, Orlando, 1985), pp. 571–586Google Scholar
  141. 141.
    R.H. Bube, Solar cells, in Handbook on Semiconductors, Device Physics, vol. 4, ed. by C. Hilsum (North-Holland, Amsterdam, 1993), pp. 825–826Google Scholar
  142. 142.
    M. Böhm, F. Blecher, A. Eckhardt, B. Schneider, S. Benthien, H. Keller, T. Lule, P. Rieve, M. Sommer, R.C. Lind, L. Humm, M. Daniels, N. Wu, High dynamic range image sensors in thin film on ASIC - technology for automotive applications, in Advanced Microsystems for Automotive Applications, ed. by D.E. Ricken, W. Gessner (Springer, Berlin, Heidelberg, 1998), pp. 157–172Google Scholar
  143. 143.
    B. Schneider, H. Fischer, S. Benthien, H. Keller, T. Lule, P. Rieve, M. Sommer, J. Schulte, M. Böhm, TFA image sensors: from the one transistor cell to a locally adaptive high dynamic range sensor, in IEDM Digest Technical Papers (1997), pp. 209–212Google Scholar
  144. 144.
    H. Fischer, J. Schulte, P. Rieve, M. Böhm, Technology and performance of TFA (Thin Film on ASIC)-sensors. Mater. Res. Soc. Symp. Proc. 336, 867–872 (1994)CrossRefGoogle Scholar
  145. 145.
    J. Schulte, H. Fischer, T. Lule, Q. Zhu, M. Böhm, Properties of TFA (Thin Film on ASIC) sensors, in Micro System Technologies, ed. by H. Reichl, A. Heuberger (1994), pp. 783–790Google Scholar
  146. 146.
    M.P. Vidal, M. Bafleur, J. Buxo, G. Sarrabayrouse, A bipolar photodetector compatible with standard CMOS technology. Solid-State Electron. 34(8), 809–814 (1991)ADSCrossRefGoogle Scholar
  147. 147.
    E.A. Vittoz, MOS transistors operated in the lateral bipolar mode and their application in CMOS technology. IEEE J. Solid-State Circuits 18(6), 273–279 (1983)ADSCrossRefGoogle Scholar
  148. 148.
    R.W. Sandage J.A. Connelly, A fingerprint opto-detector using lateral bipolar phototransistors in a standard CMOS process, in IEDM Digest Technical Papers (1995), pp. 171–174Google Scholar
  149. 149.
    W.T. Holman, J.A. Connelly, A compact low-noise operational amplifier for a 1.2 \(\upmu \)m digital CMOS technology. IEEE J. Solid-State Circuits 30(6), 710–714 (1995)ADSCrossRefGoogle Scholar
  150. 150.
    H. Beneking, Gain and bandwidth of fast near-infrared photodetectors: a comparison of diodes, phototransistors, and photoconductive devices. IEEE Trans. Electron Devices 29(9), 1420–1430 (1982)ADSCrossRefGoogle Scholar
  151. 151.
    R. Schwarte, Z. Xu, H. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, J. Schulte, A new electrooptical mixing and correlating sensor: facilities and applications of the photonic mixer device (PMD), in Proceedings of the SPIE — Sensors, Sensor Systems, and Sensor Data Processing, vol. 3100 (1997), pp. 245–253Google Scholar
  152. 152.
    R. Schwarte, Dynamic 3D-vision, in Proceedings of the IEEE International Symposium on Electron Devices for Microwave and Optoelectronic Applications (2001), pp. 241–248Google Scholar
  153. 153.
    K. Oberhauser, G. Zach, A. Nemecek, H. Zimmermann, Time-of-flight based pixel architecture with integrated double-cathode photodetector, in Proceedings of the SPIE vol. 6616 (2007), pp. 66160C–1–66160C–9Google Scholar
  154. 154.
    A. Nemecek and H. Zimmermann, Gate-controlled photodetector in PIN technology for distance measurement, in Proceedings of the International Semiconductor Device Research Symposium (ISDRS) (2007), pp. CFP07511–CDRGoogle Scholar
  155. 155.
    A. Nemecek, G. Zach, H. Zimmermann, Correlating photodetector with current carrying photogate for time-of-flight distance measurement, in Proceedings of the SPIE, vol. 7003 (2008), pp. 70030L–1–70030L–8Google Scholar
  156. 156.
    A. Nemecek, H. Zimmermann, Buried finger concept for a correlating double cathode photodetector in BiCMOS, in Proceedings of the European Solid State Device Research Conference (ESSDERC) (2010), pp. 261–264Google Scholar
  157. 157.
    C.S. Bamji, P. O’Connor, T. Elkhabit, S. Mehta, B. Thompson, L.A. Prather, D. Snow, O.C. Akkaya, A. Daniel, A.D. Payne, T. Perry, M. Fenton, V.-H. Chan, A 0.13 \(\upmu \)m CMOS system-on-chip for a 512 \(\times \) 424 time-of-flight image sensor with multi-frequency photo-demodulation up to 130 MHz and 2 GS/s ADC. IEEE J. Solid-State Circuits 50(1), 303–319 (2015)ADSCrossRefGoogle Scholar
  158. 158.
    B. Ciftcioglu, J. Zhang, L. Zhang, J.R. Marciante, J.D. Zuegel, R. Sobolewski, H. Wu, 3-GHz silicon photodiodes integrated in a 0.18-\(\upmu \)m CMOS technology. IEEE Photonics Technol. Lett. 20(24), 2069–2071 (2008)ADSCrossRefGoogle Scholar
  159. 159.
    F.-P. Chou, C.-W. Wang, Z.-Y. Li, Y.-C. Hsieh, Y.-M. Hsin, Effect of deep n-well bias in an 850-nm Si photodiode fabricated using the CMOS process. IEEE Photonics Technol. Lett. 25(7), 659–662 (2013)ADSCrossRefGoogle Scholar
  160. 160.
    M.-J. Lee, W.-Y. Choi, A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product. Opt. Exp. 18(23), 24189–24194 (2010)ADSCrossRefGoogle Scholar
  161. 161.
    J.-S. Youn, M. Lee, K.-Y. Park, W.-Y. Choi, 10-Gb/sw 850 nm CMOS OEIC receiver with a silicon avalanche photodetector. IEEE J. Quantum Electron. 48(2), 229–236 (2012)ADSCrossRefGoogle Scholar
  162. 162.
    M. Atef, A. Polzer, H. Zimmermann, Avalanche double photodiode in 40-nm standard CMOS technology. IEEE J. Quantum Electron. 49(3), 350–356 (2013)ADSCrossRefGoogle Scholar
  163. 163.
    M.-J. Lee, W.-Y. Choi, Performance optimization and improvement of silicon avalanche photodetectors in standard CMOS technology. IEEE J. Sel. Top. Quantum Electron. 24(2), 3801013 (2018)Google Scholar
  164. 164.
    C.-K. Tseng, K.-H. Chen, W.-T. Chen, M.-C.M. Lee, N. Na, A high-speed and low-breakdown-voltage silicon avalanche photodetector. IEEE Photonics Technol. Lett. 26(6), 591–594 (2014)ADSCrossRefGoogle Scholar
  165. 165.
    B. Steindl, R. Enne, S. Schidl, H. Zimmermann, Linear mode APD with high responsivity integrated in high-voltage CMOS. IEEE Electron Device Lett. 35(9), 897–899 (2014)ADSCrossRefGoogle Scholar
  166. 166.
    P. Brandl, R. Enne, T. Jukic, H. Zimmermann, OWC using a fully integrated optical receiver with large-diameter APD. IEEE Photonics Technol. Lett. 27(5), 482–485 (2015)ADSCrossRefGoogle Scholar
  167. 167.
    W. Gaberl, K. Schneider-Hornstein, R. Enne, B. Steindl, H. Zimmermann, Avalanche photodiode with high responsivity in 0.35 \(\upmu \)m CMOS. SPIE Opt. Eng. 53(4), 043105–1–043105–4 (2014)Google Scholar
  168. 168.
    B. Steindl, W. Gaberl, R. Enne, S. Schidl, K. Schneider-Hornstein, H. Zimmermann, Linear mode avalanche photodiode with 1-GHz bandwidth fabricated in 0.35 \(\upmu \)m CMOS. IEEE Photonics Technol. Lett. 26(15), 1511–1514 (2014)Google Scholar
  169. 169.
    R. Enne, B. Steindl, H. Zimmermann, Improvement of CMOS-integrated vertical APDs by applying lateral well modulation. IEEE Photonics Technol. Lett. 27(18), 1907–1910 (2015)ADSCrossRefGoogle Scholar
  170. 170.
    R. Enne, B. Steindl, H. Zimmermann, Speed optimized linear-mode high-voltage CMOS avalanche photodiodes with high responsivity. Opt. Lett. 40(19), 4400–4403 (2015)ADSCrossRefGoogle Scholar
  171. 171.
    B. Steindl, T. Jukic, H. Zimmermann, Optimized silicon CMOS reach-through avalanche photodiode with 2.3-GHz bandwidth. SPIE Opt. Eng. 56(11), pp. 110501–110501–3 (2017)CrossRefGoogle Scholar
  172. 172.
    T. Jukic, P. Brandl, H. Zimmermann, Determination of the excess noise of avalanche photodiodes intergated in 0.35 \(\upmu \)m CMOS technologies. SPIE Opt. Eng. 57(4), 044101-1–044101-5 (2018)Google Scholar
  173. 173.
    H. Finkelstein, M.J. Hsu, S.C. Esener, STI-bounded single-photon avalanche diode in a deep-submicrometer CMOS technology. IEEE Electron Device Lett. 27(11), 887–889 (2006)ADSCrossRefGoogle Scholar
  174. 174.
    J.A. Richardson, L.A. Grant, R.K. Henderson, Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology. IEEE Photonics Technol. Lett. 21, 1020–1022 (2009)ADSCrossRefGoogle Scholar
  175. 175.
    C. Niclass, K. Ito, M. Soga, H. Matsubara, I. Aoyagi, S. Kato, M. Kagami, Design and characterization of a 256\(\times \)64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor. Opt. Exp. 20, 11863–11881 (2012)ADSCrossRefGoogle Scholar
  176. 176.
    Y. Maruyam, J.R. Blacksberg, E. Charbon, A 1024\(\times \)8 700 ps time-gated SPAD line sensor for laser Raman spectroscopy and LIBS in space and rover-based planetary exploration, in Proceedings of the IEEE International on Solid-State Circuits Conference, pp. 110–111, 2013Google Scholar
  177. 177.
    C. Veerappan, E. Charbon, A low darc count P-I-N diode based SPAD in CMOS technology. IEEE Trans. Electron Devices 63(1), 65–71 (2016)ADSCrossRefGoogle Scholar
  178. 178.
    S. Lindner, S. Pellegrini, Y. Henrion, B. Rae, W. Wolf, E. Charbon, A high-PDE, backside-illuminated SPAD in 65/40-nm 3D IC CMOS pixel with cascoded passive quenching and active recharge. IEEE Electron Device Lett. 38(11), 1547–1550 (2017)ADSCrossRefGoogle Scholar
  179. 179.
    B. Steindl, R. Enne, H. Zimmermann, Thick detection zone single-photon avalanche diode fabricated in 0.35 \(\upmu \)m complementary metal-oxide semiconductors. SPIE Opt. Eng. 54(5), 050503-1–050503-3 (2015)ADSGoogle Scholar
  180. 180.
    E.G. Webster, L.A. Grant, R.K. Henderson, A high-performance single-photon avalanche diode in 130-nm CMOS imaging technology. IEEE Electron Device Lett. 33(11), 1589–1591 (2012)ADSCrossRefGoogle Scholar
  181. 181.
    E.G. Webster, J.A. Richardson, L.A. Grant, D. Renshaw, R.K. Henderson, A single-photon avalanche diode in 90-nm CMOS imaging technology with 44% photon detection efficiency at 690 nm. IEEE Electron Device Lett. 33(5), 694–696 (2012)ADSCrossRefGoogle Scholar
  182. 182.
    S. Mandai, M.W. Fishburn, Y. Maruyama, E. Charbon, A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology. Opt. Exp. 20(6), 5849–5857 (2012)ADSCrossRefGoogle Scholar
  183. 183.
    C. Niclass, H. Matsubara, M. Soga, M. Ohta, M. Ogawa, T. Yamashita, A NIR-sensitivity-enhanced single-photon avalanche diode in 0.18 \(\upmu \)m CMOS, in Proceedings of the International Image Sensor Workshop (2015), pp. 11–4Google Scholar
  184. 184.
    I. Takai, H. Matsubara, M. Soga, M. Ohta, M.O.T. Yamashita, Single-photon avalanche diode with enhanced NIR-sensitivity for automotive LIDAR systems. Sensors 16, 459 (2016)CrossRefGoogle Scholar
  185. 185.
    H. Zimmermann, B. Steindl, M. Hofbauer, R. Enne, Integrated fiber optical receiver reducing the gap to the quantum limit. Sci. Rep. 7, 2652 (2017)ADSCrossRefGoogle Scholar
  186. 186.
    S. Wolf, Silicon processing for the VLSI era, Vol. 2 – Process integration (Lattice Press, Sunset Beach, 1990)Google Scholar
  187. 187.
    R.H. Havemann, R.H. Eklund, Process integration issues for submicron BiCMOS technology. Solid State Technol. 6, 71–76 (1992)Google Scholar
  188. 188.
    T. Ikeda, A. Watanabe, Y. Nishio, I. Masuda, N. Tamba, M. Odaka, K. Ogiue, High-speed BiCMOS technology with a buried twin well structure. IEEE Trans. Electron Devices 34(6), 1304–1310 (1987)ADSCrossRefGoogle Scholar
  189. 189.
    S.S. Ahmed, W.W. Asakawa, M.T. Bohr, S.S. Chambers, T. Deeter, M. Denham, J.K. Greason, W.W. Holt, R.R. Taylor, I. Young, A triple diffused approach for high performance 0.8 \(\upmu \)m BiCMOS technology. Solid State Technol. 10, 33–40 (1992)Google Scholar
  190. 190.
    R.A. Chapman, D.A. Bell, R.H. Eklund, R.H. Havemann, M.G. Harward, R.A. Haken, Submicrometer BiCMOS well design for optimum circuit performance, in IEDM Digest Technical Papers (1988), pp. 756–759Google Scholar
  191. 191.
    H. Iwai, G. Sasaki, Y. Unno, Y. Niitsu, M. Norishima, Y. Sugimoto, K. Kanzaki, 0.8-\(\upmu \)m Bi-CMOS technology with high \(f_{\rm T}^{\prime \prime }\) ion-implanted emitter bipolar transistor, in IEDM Digest Technical Papers (1987), pp. 28–31Google Scholar
  192. 192.
    T.-Y. Chiu, G.M. Chin, M.Y. Lau, R.C. Hanson, M.D. Morris, K.F. Lee, A.M. Voshchenkov, R.G. Swartz, V.D. Archer, M.T.Y. Liu, S.N. Finegan, M.D. Feuer, Non-overlapping super self-aligned BiCMOS with 87 ps low power ECL, in IEDM Digest Technical Papers (1988), pp. 752–755Google Scholar
  193. 193.
    W.R. Burger, C. Lage, T. Davies, M. DeLong, D. Haueisen, J. Small, G. Huglin, A. Landau, F. Whitwer, B. Bastani, An advanced self-aligned BICMOS technology for high performance 1-megabit ECL i/O SRAMs, in IEDM Digest Technical Papers (1989), pp. 421–424Google Scholar
  194. 194.
    Y. Kobayashi, C. Yamaguchi, Kobayashi, Y. Amemiya, T. Sakai, High perfomance LSI process technology: SST CBi-CMOS, in IEDM Digest Technical Papers (1988), pp. 760–763Google Scholar
  195. 195.
    K. Sakaue, Y. Shobatake, M. Motoyama, Y. Kumaki, S. Takatsuka, S. Tanaka, H. Hara, K. Matsuda, S. Kitaoka, M. Noda, Y. Niitsu, M. Norishima, H. Momose, K. Maeguchi, M. Ishibe, S. Shimizu, T. Kodama, A 0.8-\(\upmu \)m BiCMOS ATM switch on an 800-Mb/s asynchronous buffered banyan network. IEEE J. Solid-State Circuits 26(8), 1133–1144 (1991)ADSCrossRefGoogle Scholar
  196. 196.
    M. El-Diwany, J. Borland, J. Chen, S. Hu, P. v. Wijnen, C. Vorst, V. Akylas, M. Brassington, R. Razouk, An advanced BiCMOS process utilizing ultra-thin silicon epitaxy over arsenic buried layers, in IEDM Digest Technical Papers (1989), pp. 245–248Google Scholar
  197. 197.
    M. Norishima, Y. Niitsu, G. Sasaki, H. Iwai, K. Maeguchi, Bipolar transistor design for low process-temperature 0.5 \(\upmu \)m BI-CMOS, in IEDM Digest Technical Papers (1989), pp. 237–240Google Scholar
  198. 198.
    P.J.-W. Lim, A.Y.C. Tzeng, H.L. Chuang, S.A.S. Onge, A 3.3 V monolithic photodetector/CMOS preamplifier for 531 Mb/s optical data link applications, in ISSCC (1993), pp. 96–97Google Scholar
  199. 199.
    D.M. Kuchta, H.A. Ainspan, F.J. Canora, R.P. Schneider, Performance of fiber-optic data links using 670 nm CW VCSELs and a monolithic Si photodetector and CMOS preamplifier. IBM J. Res. Develop. 39(1/2), 63–72 (1995)CrossRefGoogle Scholar
  200. 200.
    H. Zimmermann, K. Kieschnick, M. Heise, H. Pless, BiCMOS OEIC for optical storage systems. Electron. Lett. 34(19), 1875–1876 (1998)CrossRefGoogle Scholar
  201. 201.
    H. Zimmermann, Full custom CMOS and BiCMOS OPTO-ASICs, in Proceedings of the 5th International Conference on Solid-State and Integrated-Circuit Technology (1998), pp. 344–347Google Scholar
  202. 202.
    K. Kieschnick, H. Zimmermann, P. Seegebrecht, Silicon-based optical receivers in BiCMOS technology for advanced optoelectronic integrated circuits, in Proceedings of the European Materials Research Society Meeting (E-MRS), Strasbourg, 1–4 June 1999 (1999)Google Scholar
  203. 203.
    H. Zimmermann, K. Kieschnick, M. Heise, H. Pless, High-bandwidth BiCMOS OEIC for optical storage systems, in IEEE International on Solid-State Circuits Conference (1999), pp. 384–385Google Scholar
  204. 204.
    K. Kieschnick, T. Heide, A. Ghazi, H. Zimmermann, P. Seegebrecht, High-speed photonic CMOS and BiCMOS receiver ICs, in Proceedings of the 25th European Solid-State Circuits Conference (ESSCIRC) (1999), pp. 398–401Google Scholar
  205. 205.
    S. Groiss, J. Sturm, Low-noise sampling system for photocurrent detection with monolithically integrated photodiodes, in Proceedings of the 27th European Solid-State Circuits Conference (ESSCIRC) (2001), pp. 180–183Google Scholar
  206. 206.
    J. Sturm, S. Hainz, G. Langguth, H. Zimmermann, Integrated photodiodes in standard BiCMOS technology, in Proceedings of the SPIE, vol. 4997B (2003)Google Scholar
  207. 207.
    K. Kieschnick, H. Zimmermann, H. Pless, P. Seegebrecht, Integrated photodiodes for DVD and CD-ROM applications, in Proceedings of the 30th European Solid-State Device Conference (ESSDERC) (2000), pp. 252–255Google Scholar
  208. 208.
    H. Zimmermann, K. Kieschnick, Low-offset BiCMOS OEIC for optical storage systems. Electron. Lett. 36(14), 1223–1224 (2000)CrossRefGoogle Scholar
  209. 209.
    G.W. de Jong, J.R.M. Bergervoet, J.H.A. Brekelmans, J.F.P. van Mil, A DC-to-250 MHz current pre-amplifier with integrated photodiodes in standard CBiMOS for optical storage systems, in ISSCC (2002), pp. 362–363Google Scholar
  210. 210.
    M. Förtsch, H. Zimmermann, W. Einbrodt, K. Bach, H. Pless, Integrated PIN photodiodes in high-performance BiCMOS technology, in IEDM Digest Technical Papers (2002), pp. 801–804Google Scholar
  211. 211.
    R. Swoboda, K. Schneider-Hornstein, H. Wille, G. Langguth, H. Zimmermann, BiCMOS-integrated photodiode exploiting drift enhancement. Opt. Eng. 53(8), pp. 087103-1-087103-4 (2014)ADSCrossRefGoogle Scholar
  212. 212.
    A. Nemecek, G. Zach, R. Swoboda, K. Oberhauser, H. Zimmermann, Integrated BiCMOS p-i-n photodetectors with high bandwidth and high responsivity. IEEE J. Sel. Top. Quantum Electron. 12(6), 1469–1475 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.EMCETechnische Universität WienViennaAustria

Personalised recommendations