Fault-Tolerant Covariance Intersection for Localizing Robot Swarms

  • John KlingnerEmail author
  • Nisar Ahmed
  • Nikolaus Correll
Conference paper
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 9)


This paper examines the important problem of cooperative localization in robot swarms, in the presence of unmodeled errors experienced by real sensors in hardware platforms. Many existing methods for cooperative swarm localization rely on approximate distance metric heuristics based on properties of the communication graph. We present a new cooperative localization method that is based on a rigorous and scalable treatment of estimation errors generated by peer-to-peer sharing of relative robot pose information. Our approach blends Covariance Intersection and Covariance Union techniques from distributed sensor fusion theory in a novel way, in order to maintain statistical estimation consistency for cooperative localization errors. Experimental validation results show that this approach provides both reliable and accurate state estimation results for Droplet swarms in scenarios where other existing swarm localization methods cannot.



This research has been supported by NSF grant #1150223.


  1. 1.
    Al Hage, J., El Najjar, M.E., Pomorski, D.: Fault tolerant multi-sensor fusion based on the information gain. J. Phys. Conf. Ser. 783(012011) (2017) (IOP Publishing)Google Scholar
  2. 2.
    Arambel, P.O., Rago, C., Mehra, R.K.: Covariance intersection algorithm for distributed spacecraft state estimation. In: American Control Conference, 2001. Proceedings of the 2001, vol. 6, pp. 4398–4403. IEEE (2001)Google Scholar
  3. 3.
    Bachrach, J., Beal, J., McLurkin, J.: Composable continuous-space programs for robotic swarms. Neural Comput. Appl. 19(6), 825–847 (2010)CrossRefGoogle Scholar
  4. 4.
    Beal, J., Bachrach, J.: Infrastructure for engineered emergence on sensor/actuator networks. IEEE Intell. Syst. 21(2), 10–19 (2006)CrossRefGoogle Scholar
  5. 5.
    Butera, W.: Text display and graphics control on a paintable computer. In: First International Conference on Self-Adaptive and Self-Organizing Systems, 2007. SASO’07, pp. 45–54. IEEE (2007)Google Scholar
  6. 6.
    Carrillo-Arce, L.C., Nerurkar, E.D., Gordillo, J.L., Roumeliotis, S.I.: Decentralized multi-robot cooperative localization using covariance intersection. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1412–1417. IEEE (2013)Google Scholar
  7. 7.
    Cornejo, A., Nagpal, R.: Distributed range-based relative localization of robot swarms. In: Algorithmic Foundations of Robotics XI, pp. 91–107. Springer (2015)Google Scholar
  8. 8.
    De Maesschalck, R., Jouan-Rimbaud, D., Massart, D.L.: The mahalanobis distance. Chemom. Intell. Lab. Syst. 50(1), 1–18 (2000)CrossRefGoogle Scholar
  9. 9.
    Farrow, N., Klingner, J., Reishus, D., Correll, N.: Miniature six-channel range and bearing system: algorithm, analysis and experimental validation. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 6180–6185. IEEE (2014)Google Scholar
  10. 10.
    Fox, D., Burgard, W., Kruppa, H., Thrun, S.: A probabilistic approach to collaborative multi-robot localization. Auton. Robots 8(3), 325–344 (2000)CrossRefGoogle Scholar
  11. 11.
    Franken, D., Hupper, A.: Improved fast covariance intersection for distributed data fusion. In: 2005 8th International Conference on Information Fusion, vol. 1, p. 7. IEEE (2005)Google Scholar
  12. 12.
    Gauci, M., Ortiz, M.E., Rubenstein, M., Nagpal, R.: Error cascades in collective behavior: a case study of the gradient algorithm on 1000 physical agents. In: Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems. pp. 1404–1412. International Foundation for Autonomous Agents and Multiagent Systems (2017)Google Scholar
  13. 13.
    Howard, A., Matark, M.J., Sukhatme, G.S.: Localization for mobile robot teams using maximum likelihood estimation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002, vol. 1, pp. 434–439. IEEE (2002)Google Scholar
  14. 14.
    Julier, S.J., Uhlmann, J.K.: A non-divergent estimation algorithm in the presence of unknown correlations. In: American Control Conference, 1997. Proceedings of the 1997, vol. 4, pp. 2369–2373. IEEE (1997)Google Scholar
  15. 15.
    Julier, S.J., Uhlmann, J.K., Nicholson, D.: A method for dealing with assignment ambiguity. In: American Control Conference, 2004. Proceedings of the 2004, vol. 5, pp. 4102–4107. IEEE (2004)Google Scholar
  16. 16.
    Klingner, J., Kanakia, A., Farrow, N., Reishus, D., Correll, N.: A stick-slip omnidirectional powertrain for low-cost swarm robotics: mechanism, calibration, and control. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 846–851. IEEE (2014)Google Scholar
  17. 17.
    Kurazume, R., Nagata, S., Hirose, S.: Cooperative positioning with multiple robots. In: 1994 IEEE International Conference on Robotics and Automation, 1994. Proceedings, pp. 1250–1257. IEEE (1994)Google Scholar
  18. 18.
    Luft, L., Schubert, T., Roumeliotis, S.I., Burgard, W.: Recursive decentralized localization for multi-robot systems with asynchronous pairwise communication. Int. J. Robot. Res. 0278364918760698 (2018)Google Scholar
  19. 19.
    Ma, D., Er, M.J., Wang, B., Lim, H.B.: Range-free wireless sensor networks localization based on hop-count quantization. Telecommun. Syst. 50(3), 199–213 (2012)CrossRefGoogle Scholar
  20. 20.
    Merkel, S., Mostaghim, S., Schmeck, H.: Distributed geometric distance estimation in ad hoc networks. In: Ad-Hoc, Mobile, and Wireless Networks, pp. 28–41. Springer (2012)Google Scholar
  21. 21.
    Nerurkar, E.D., Roumeliotis, S.I., Martinelli, A.: Distributed maximum a posteriori estimation for multi-robot cooperative localization. In: IEEE International Conference on Robotics and Automation, 2009. ICRA’09, pp. 1402–1409. IEEE (2009)Google Scholar
  22. 22.
    Pires, A.G., Macharet, D.G., Chaimowicz, L.: Towards cooperative localization in robotic swarms. In: Distributed Autonomous Robotic Systems, pp. 105–118. Springer (2016)Google Scholar
  23. 23.
    Prorok, A., Bahr, A., Martinoli, A.: Low-cost collaborative localization for large-scale multi-robot systems. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 4236–4241. IEEE (2012)Google Scholar
  24. 24.
    Reece, S., Roberts, S.: Generalised covariance union: a unified approach to hypothesis merging in tracking. IEEE Trans. Aerosp. Electron. Syst. 46(1) (2010)CrossRefGoogle Scholar
  25. 25.
    Roumeliotis, S.I., Bekey, G.A.: Distributed multirobot localization. IEEE Trans. Robot. Autom. 18(5), 781–795 (2002)CrossRefGoogle Scholar
  26. 26.
    Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: a low cost scalable robot system for collective behaviors. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 3293–3298. IEEE (2012)Google Scholar
  27. 27.
    Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (2014)CrossRefGoogle Scholar
  28. 28.
    Sijs, J., Lazar, M.: State fusion with unknown correlation: ellipsoidal intersection. Automatica 48(8), 1874–1878 (2012)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Uhlmann, J.K.: Covariance consistency methods for fault-tolerant distributed data fusion. Inf. Fusion 4(3), 201–215 (2003)CrossRefGoogle Scholar
  30. 30.
    Wang, S., Colas, F., Liu, M., Mondada, F., Magnenat, S.: Localization of inexpensive robots with low-bandwidth sensors. In: Distributed Autonomous Robotic Systems, pp. 545–558. Springer (2018)Google Scholar
  31. 31.
    Werner-Allen, G., Tewari, G., Patel, A., Welsh, M., Nagpal, R.: Firefly-inspired sensor network synchronicity with realistic radio effects. In: Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems, pp. 142–153. ACM (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of ColoradoBoulderUSA

Personalised recommendations