Advertisement

Multi-agent Cooperative Pursuit-Evasion Strategies Under Uncertainty

  • Kunal ShahEmail author
  • Mac Schwager
Conference paper
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 9)

Abstract

We present a method for a collaborative team of pursuing robots to contain and capture a single evading robot. The main challenge is that the pursuers do not know the position of the evader exactly nor do they know the policy of the evader. Instead, the pursuers maintain an estimate of the evader’s position over time from noisy online measurements. We propose a policy by which the pursuers move to maximally reduce the area of space reachable by the evader given the uncertainty in the evader’s position estimate. The policy is distributed in the sense that each pursuer only needs to know the positions of its closest neighbors. The policy guarantees that the evader’s reachable area is non-increasing between measurement updates regardless of the evader’s policy. Furthermore, we show in simulations that the pursuers capture the evader despite the position uncertainty provided that the pursuer’s measurement noise decreases with the distance to the evade.

Keywords

Multi-agent pursuit-evasion Game theoretic control Reachability methods 

Notes

Acknowledgements

This work was supported in part by Ford Motor Company. We are grateful for this support.

References

  1. 1.
    Allen, R.E., Clark, A.A., Starek, J.A., Pavone, M.: A machine learning approach for real-time reachability analysis. In: Intelligent Robots and Systems, pp. 2202–2208. IEEE (2014)Google Scholar
  2. 2.
    Anton, F., Mioc, D., Gold, C.: The Voronoi Diagram of Circles and Its Application to the Visualization of the Growth of Particles, pp. 20–54. Springer, Berlin, Heidelberg (2009). http://link.springer.com/10.1007/978-3-642-00212-0_2CrossRefGoogle Scholar
  3. 3.
    Basar, T., Olsder, G.: Dynamic Noncooperative Game Theory. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (1999). https://books.google.com/books?id=k1oF5AxmJlYC
  4. 4.
    Becis-Aubry, Y., Boutayeb, M., Darouach, M.: A stable recursive state estimation filter for models with nonlinear dynamics subject to bounded disturbances. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 1321–1326, Dec 2006Google Scholar
  5. 5.
    Bertsekas, D., Rhodes, I.: Recursive state estimation for a set-membership description of uncertainty. IEEE Trans. Autom. Control 16(2), 117–128 (1971). http://ieeexplore.ieee.org/document/1099674/MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chung, T.H., Hollinger, G.A., Isler, V.: Search and pursuit-evasion in mobile robotics. Auton. Robots 31(4), 299–316 (2011). http://link.springer.com/10.1007/s10514-011-9241-4CrossRefGoogle Scholar
  7. 7.
    Durieu, C., Walter, É., Polyak, B.: Multi-input multi-output ellipsoidal state bounding. J. Optim. Theory Appl. 111(2), 273–303 (2001). http://link.springer.com/10.1023/A:1011978200643MathSciNetCrossRefGoogle Scholar
  8. 8.
    Emiris, I.Z., Tsigaridas, E.P., Tzoumas, G.M.: The predicates for the Voronoi diagram of ellipses. In: Proceedings of the Twenty-second Annual Symposium on Computational Geometry—SCG ’06, p. 227. ACM Press, New York, New York, USA (2006). http://portal.acm.org/citation.cfm?doid=1137856.1137891
  9. 9.
    Gerkey, B.P., Thrun, S., Gordon, G.: Visibility-based pursuit-evasion with limited field of view. Int. J. Robot. Res. 25(4), 299–315 (2004). http://www.cs.cmu.edu/~ggordon/aaai04/pe-real-robots.pdfCrossRefGoogle Scholar
  10. 10.
    Huang, H., Ding, J., Zhang, W., Tomlin, C.J.: A differential game approach to planning in adversarial scenarios: a case study on capture-the-flag. In: 2011 IEEE International Conference on Robotics and Automation, pp. 1451–1456, May 2011Google Scholar
  11. 11.
    Huang, H., Zhang, W., Ding, J., Stipanovii, D.M., Tomlin, C.J.: Guaranteed decentralized pursuit-evasion in the plane with multiple pursuers. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference, pp. 4835–4840, Dec 2011Google Scholar
  12. 12.
    Isaacs, R.: Differential Games. Courier Corporation, New York (1967)zbMATHGoogle Scholar
  13. 13.
    Kantaros, Y., Zavlanos, M.M.: Communication-aware coverage control for robotic sensor networks. In: 53rd IEEE Conference on Decision and Control, pp. 6863–6868, Dec 2014Google Scholar
  14. 14.
    LaValle, S., Hinrichsen, J.: Visibility-based pursuit-evasion: the case of curved environments. IEEE Trans. Robot. Autom. 17(2), 196–202 (2001). http://ieeexplore.ieee.org/document/928565/CrossRefGoogle Scholar
  15. 15.
    Liu, Y., Zhao, Y., Wu, F.: Ellipsoidal state-bounding-based set-membership estimation for linear system with unknown-but-bounded disturbances. IET Control Theory Appl. 10(4), 431–442 (2016). http://digital-library.theiet.org/content/journals/10.1049/iet-cta.2015.0654MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ngeli, T., Conte, C., Domahidi, A., Morari, M., Hilliges, O.: Environment-independent formation flight for micro aerial vehicles. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1141–1146, Sep 2014Google Scholar
  17. 17.
  18. 18.
    Olfati-Saber, R.: Distributed Kalman filter with embedded consensus filters. In: Proceedings of the 44th IEEE Conference on Decision and Control, pp. 8179–8184, Dec 2005Google Scholar
  19. 19.
    Oyler, D.W.: Contributions to Pursuit-Evasion Game Theory. Ph.D. thesis, University of Michigan (2016). https://deepblue.lib.umich.edu/bitstream/handle/2027.42/120650/dwoyler_1.pdf?sequence=1&isAllowed=y
  20. 20.
    Pan, S., Huang, H., Ding, J., Zhang, W., vii, D.M.S., Tomlin, C.J.: Pursuit, evasion and defense in the plane, pp. 4167–4173, June 2012Google Scholar
  21. 21.
    Pierson, A., Wang, Z., Schwager, M.: Intercepting rogue robots: an algorithm for capturing multiple evaders with multiple pursuers. IEEE Robot. Autom. Lett. 2(2), 530–537 (2017)CrossRefGoogle Scholar
  22. 22.
    Santos, M., Diaz-Mercado, Y., Egerstedt, M.: Coverage control for multirobot teams with heterogeneous sensing capabilities. IEEE Robot. Autom. Lett. 3(2), 919–925 (2018)CrossRefGoogle Scholar
  23. 23.
    Stipanović, D.M., Melikyan, A., Hovakimyan, N.: Guaranteed strategies for nosnlinear multi-player pursuit-evasion games. Int. Game Theory Rev. 12(01), 1–17 (2010)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Tron, R., Vidal, R., Terzis, A.: Distributed pose averaging in camera networks via consensus on SE(3). In: 2008 Second ACM/IEEE International Conference on Distributed Smart Cameras, pp. 1–10, Sep 2008Google Scholar
  25. 25.
    Vidal, R., Shakernia, O., Kim, H.J., Shim, D.H., Sastry, S.: Probabilistic pursuit-evasion games: theory, implementation, and experimental evaluation. IEEE Trans. Robot. Autom. 18(5), 662–669 (2002). http://ieeexplore.ieee.org/document/1067989/CrossRefGoogle Scholar
  26. 26.
    Zhou, Z., Zhang, W., Ding, J., Huang, H., Stipanović, D.M., Tomlin, C.J.: Cooperative pursuit with Voronoi partitions. Automatica 72, 64–72 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Department of Aeronautics and AstronauticsStanford UniversityStanfordUSA

Personalised recommendations