Adaptive Path Formation in Self-Assembling Robot Swarms by Tree-Like Vascular Morphogenesis

  • Mohammad Divband SooratiEmail author
  • Payam Zahadat
  • Javad Ghofrani
  • Heiko Hamann
Conference paper
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 9)


For self-assembly, robot swarms can be programmed to form predefined shapes. However, if the swarm is required to adapt the assembled shapes to dynamic features of the environment at runtime, then the shapes’ structures need to be dynamic, too. A prerequisite for adaptation is the exploration and detection of changes followed by appropriate rearrangements of the assembled structure. We study a robot swarm that forms trees to explore its environment and searches for bright areas. The tree-formation process is inspired by the vascular morphogenesis of natural plants. The detection of light produces a virtual resource shared within the tree, helping to drop useless branches while reinforcing efficient paths between the bright areas and the tree root. We successfully verify our approach with several swarm robot experiments in a dynamic environment, showing that the robot swarm can collectively discriminate between light sources at different distances and of different qualities.


Swarm robotics Bio-inpsired algorithms Self-assembly Self-adaptive 


  1. 1.
    Adamatzky, A.: Physarum Machines: Computers from Slime Mould. World Scientific (2010)Google Scholar
  2. 2.
    Bonifaci, V., Mehlhorn, K., Varma, G.: Physarum can compute shortest paths. J. Theor. Biol. 309, 121–133 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Deneubourg, J.L., Goss, S., Franks, N., Pasteels, J.: The blind leading the blind: modeling chemically mediated army ant raid patterns. J. Insect Behav. 2(5), 719–725 (1989)CrossRefGoogle Scholar
  4. 4.
    Divband Soorati, M., Hamann, H.: Robot self-assembly as adaptive growth process: collective selection of seed position and self-organizing tree-structures. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5745–5750 (2016).
  5. 5.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. Trans. Sys. Man Cyber. Part B 26(1), 29–41 (Feb 1996). Scholar
  6. 6.
    Gauci, M., Nagpal, R., Rubenstein, M.: Programmable self-disassembly for shape formation in large-scale robot collectives. In: 13th International Symposium on Distributed Autonomous Robotic Systems (DARS) (2016)Google Scholar
  7. 7.
    Gebhardt, G.H., Daun, K., Schnaubelt, M., Neumann, G., et al.: Learning robust policies for object manipulation with robot swarms (2018)Google Scholar
  8. 8.
    Goldstein, S.C., Campbell, J.D., Mowry, T.C.: Programmable matter. Computer 38(6), 99–101 (2005)CrossRefGoogle Scholar
  9. 9.
    Hamann, H.: Swarm Robotics: A Formal Approach. Springer (2018)Google Scholar
  10. 10.
    Hamann, H., Divband Soorati, M., Heinrich, M.K., Hofstadler, D.N., Kuksin, I., Veenstra, F., Wahby, M., Nielsen, S.A., Risi, S., Skrzypczak, T., Zahadat, P., Wojtaszek, P., Støy, K., Schmickl, T., Kernbach, S., Ayres, P.: flora robotica–an architectural system combining living natural plants and distributed robots (2017). arXiv preprint arXiv:1709.04291
  11. 11.
    Hamann, H., Wahby, M., Schmickl, T., Zahadat, P., Hofstadler, D., Støy, K., Risi, S., Faina, A., Veenstra, F., Kernbach, S., Kuksin, I., Kernbach, O., Ayres, P., Wojtaszek, P.: flora robotica—mixed societies of symbiotic robot-plant bio-hybrids. In: Proceedings of IEEE Symposium on Computational Intelligence (SSCI), pp. 1102–1109. IEEE (2015).
  12. 12.
    LaValle, S.M., Kuffner, J.J.: Rapidly-exploring random trees: progress and prospects. In: Donald, B.R., Lynch, K.M., Rus, D. (eds.) Algorithmic and Computational Robotics: New Directions, pp. 293–308. A. K. Peters, Wellesley, MA, USA (2001)Google Scholar
  13. 13.
    Levi, P., Kernbach, S. (eds.): Symbiotic Multi-Robot Organisms: Reliability, Adaptability, Evolution. Springer (Feb 2010)Google Scholar
  14. 14.
    McEvoy, M.A., Correll, N.: Materials that couple sensing, actuation, computation, and communication. Science 347(6228) (2015). Scholar
  15. 15.
    Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: a low cost scalable robot system for collective behaviors, pp. 3293–3298 (2012)Google Scholar
  16. 16.
    Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (2014). Scholar
  17. 17.
    Saldana, D., Gabrich, B., Salda, D.: Modquad: the flying modular structure that self-assembles in midair (2018)Google Scholar
  18. 18.
    Schmickl, T., Crailsheim, K.: A navigation algorithm for swarm robotics inspired by slime mold aggregation. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.) Swarm Robotics—Second SAB 2006 International Workshop, LNCS, vol. 4433, pp. 1–13. Springer, Berlin, Heidelberg, New York (2007)Google Scholar
  19. 19.
    Zahadat, P., Hofstadler, D.N., Schmickl, T.: Development of morphology based on resource distribution: finding the shortest path in a maze by vascular morphogenesis controller. In: 14th European Conference on Artificial Life (ECAL), vol. 14, pp. 428–429 (2017)Google Scholar
  20. 20.
    Zahadat, P., Hofstadler, D.N., Schmickl, T.: Vascular morphogenesis controller: a generative model for developing morphology of artificial structures. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 163–170. GECCO’17, ACM, New York, NY, USA (2017).

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mohammad Divband Soorati
    • 1
    Email author
  • Payam Zahadat
    • 2
  • Javad Ghofrani
    • 3
  • Heiko Hamann
    • 1
  1. 1.Institute of Computer EngineeringUniversity of LübeckLübeckGermany
  2. 2.Artificial Life LabKarl-Franzens University GrazGrazAustria
  3. 3.Department of Computer Science and MathematicsDresden University of Applied SciencesDresdenGermany

Personalised recommendations