Advertisement

Simulating Collaborative Robots in a Massive Multi-agent Game Environment (SCRIMMAGE)

  • Kevin DeMarcoEmail author
  • Eric Squires
  • Michael Day
  • Charles Pippin
Conference paper
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 9)

Abstract

Testing mobile robotic systems in the field is a costly and risky task. Unfortunately, there is a gap between the existing simulation capabilities and those required to simulate large numbers of aerial vehicles. Many multi-agent robotics simulators have been restricted to the 2D plane, which limits their usefulness for aerial robotic platforms. While high-fidelity 3D robotics simulators exist, simulating large numbers of agents in these simulators can result in slower-than-real-time performance. SCRIMMAGE provides a 3D robotics environment that can simulate varying levels of collision detection, sensor modeling, communications modeling, and motion modeling fidelity due to its flexible plugin interface. This allows a robotics researcher to simulate hundreds of aircraft with low-fidelity motion models or tens of aircraft with high-fidelity motion models on single computer. SCRIMMAGE provides tools for batch simulation runs, varying initial conditions, and deployment to a cluster.

Keywords

Simulation Swarm robotics Autonomy 

References

  1. 1.
    Arkin, R.: Motor schema based navigation for a mobile robot: an approach to programming by behavior. In: 1987 IEEE International Conference on Robotics and Automation. Proceedings, vol. 4, pp. 264–271. IEEE (1987)Google Scholar
  2. 2.
    Bailey, M., Gebis, K., Zefran, M.: Simulation of Closed Kinematic Chains in Realistic Environments Using Gazebo. Springer, Cham (2016)Google Scholar
  3. 3.
    Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The r*-tree: an efficient and robust access method for points and rectangles. In: ACM Sigmod Record, vol. 19, pp. 322–331. ACM (1990)CrossRefGoogle Scholar
  4. 4.
    Benjamin, M.R., Leonard, J.J., Schmidt, H., Newman, P.M.: An overview of moos-ivp and a brief users guide to the ivp helm autonomy software (2009)Google Scholar
  5. 5.
    Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba, W.: OpenAI gym. arXiv preprint arXiv:1606.01540 (2016)
  6. 6.
    Collier, N.: Repast: an extensible framework for agent simulation. Univ. Chic. Soc. Sci. Res. 36, 2003 (2003)Google Scholar
  7. 7.
    Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998)CrossRefGoogle Scholar
  8. 8.
    Forrester, A., Keane, A., et al.: Engineering Design via Surrogate Modelling: A Practical Guide. Wiley (2008)Google Scholar
  9. 9.
    Gerkey, B., Vaughan, R.T., Howard, A.: The player/stage project: tools for multi-robot and distributed sensor systems. In: Proceedings of the 11th international conference on advanced robotics, vol. 1, pp. 317–323 (2003)Google Scholar
  10. 10.
    Isaacs, R.: Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization, vol. 1. Dover Publications, Inc. (1965)Google Scholar
  11. 11.
    Jakob, W., Rhinelander, J., Moldovan, D.: pybind11—seamless operability between c++11 and python (2017). https://github.com/pybind/pybind11
  12. 12.
    Kiran, M., Richmond, P., Holcombe, M., Chin, L.S., Worth, D., Greenough, C.: Flame: simulating large populations of agents on parallel hardware architectures. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 1633–1636. International Foundation for Autonomous Agents and Multiagent Systems (2010)Google Scholar
  13. 13.
    Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings, vol. 3, pp. 2149–2154. IEEE (2004)Google Scholar
  14. 14.
    Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: a multiagent simulation environment. Simulation 81(7), 517–527 (2005)CrossRefGoogle Scholar
  15. 15.
    Martinez, J.M., Collette, Y., Baudin, M., Christopoulou, M., Baudin, M., et al.: pyDOE: the experimental design package for Python (2009–). https://pythonhosted.org/pyDOE/. Accessed 07 Sept 2017
  16. 16.
    Newman, P., Moos, A.: A mission oriented operating suite. Technical Report OE2007-07. MIT Department of Ocean Engineering (2003)Google Scholar
  17. 17.
    Nishimura, S.I., Ikegami, T.: Emergence of collective strategies in a prey-predator game model. Artif. Life 3(4), 243–260 (1997)CrossRefGoogle Scholar
  18. 18.
    Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., et al.: ARGoS: a modular, multi-engine simulator for heterogeneous swarm robotics, pp. 5027–5034. IEEE (2011)Google Scholar
  19. 19.
    Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, p. 5. Kobe (2009)Google Scholar
  20. 20.
    Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. ACM SIGGRAPH Comput. Graph. 21(4), 25–34 (1987)CrossRefGoogle Scholar
  21. 21.
    Rohmer, E., Singh, S.P., Freese, M.: V-rep: a versatile and scalable robot simulation framework, pp. 1321–1326. IEEE (2013)Google Scholar
  22. 22.
    Sklar, E.: Netlogo, a multi-agent simulation environment (2007)CrossRefGoogle Scholar
  23. 23.
    Şucan, I.A., Moll, M., Kavraki, L.E.: The open motion planning library. IEEE Robot. Autom. Mag. 19(4), 72–82 (December 2012). https://ompl.kavrakilab.orgCrossRefGoogle Scholar
  24. 24.
    Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, vol. 1. MIT press Cambridge (1998)Google Scholar
  25. 25.
    Vaughan, R.: Massively multi-robot simulation in stage. Swarm Intell. 2(2), 189–208 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kevin DeMarco
    • 1
    Email author
  • Eric Squires
    • 1
  • Michael Day
    • 1
  • Charles Pippin
    • 1
  1. 1.Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations