Multi-agent Coordination Subject to Counting Constraints: A Hierarchical Approach

  • Yunus Emre SahinEmail author
  • Necmiye Ozay
  • Stavros Tripakis
Conference paper
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 9)


This paper considers the problem of generating multi-agent trajectories to satisfy properties given in counting temporal logic. A hierarchical solution approach is proposed where a coarse plan that satisfies the logic constraints is computed first at the higher-level, followed by a lower-level task of solving a sequence of multi-agent reachability problems. Collision avoidance and potential asynchronous executions are also dealt with at the lower-level. When lower-level planning problems are found to be infeasible, these infeasibility certificates are incorporated into the higher-level problem to re-generate plans. The results are demonstrated with several examples that show how the proposed approach scales with respect to different parameters.


Counting constraints Multi-agent path planning Formal methods Hierarchical planning 



This work is supported in part by NSF grants CNS-1446298 and ECCS-1553873, and DARPA grant N66001-14-1-4045.


  1. 1.
    Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (1999)Google Scholar
  2. 2.
    Bhatia, A., Kavraki, L.E., Vardi, M.Y.: Sampling-based motion planning with temporal goals. In: Proceedings of ICRA, pp. 2689–2696 (2010)Google Scholar
  3. 3.
    Desai, A., Saha, I., Yang, J., Qadeer, S., Seshia, S.A.: Drona: a framework for safe distributed mobile robotics. In: Proceedings of ICCPS, pp. 239–248. ICCPS ’17, ACM, New York, NY, USA (2017),
  4. 4.
    Gray, A., Gao, Y., Lin, T., Hedrick, J.K., Tseng, H.E., Borrelli, F.: Predictive control for agile semi-autonomous ground vehicles using motion primitives. In: Proceedings of ACC, pp. 4239–4244. IEEE (2012)Google Scholar
  5. 5.
    Guo, M., Dimarogonas, D.V.: Multi-agent plan reconfiguration under local ltl specifications. Int. J. Robot. Res. 34(2), 218–235 (2015)CrossRefGoogle Scholar
  6. 6.
    Gurobi Optimization, I.: Gurobi optimizer reference manual (2016).
  7. 7.
    Haghighi, I., Sadraddini, S., Belta, C.: Robotic swarm control from spatio-temporal specifications. In: Proceedings of CDC, pp. 5708–5713 (Dec 2016)Google Scholar
  8. 8.
    Kantaros, Y., Zavlanos, M.M.: Distributed optimal control synthesis for multi-robot systems under global temporal tasks. In: Proceedings of the 9th ACM/IEEE International Conference on Cyber-Physical Systems, pp. 162–173. IEEE Press (2018)Google Scholar
  9. 9.
    Karaman, S., Frazzoli, E.: Linear temporal logic vehicle routing with applications to multi-uav mission planning. Int. J. Robust Nonlinear Control. 21(12), 1372–1395 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kloetzer, M., Belta, C.: Temporal logic planning and control of robotic swarms by hierarchical abstractions. IEEE Trans. Robot. 23(2), 320–330 (2007)CrossRefGoogle Scholar
  11. 11.
    Kloetzer, M., Belta, C.: Automatic deployment of distributed teams of robots from temporal logic motion specifications. IEEE Trans. Robot. 26(1), 48–61 (2010)CrossRefGoogle Scholar
  12. 12.
    Li, Z., Wen, G., Duan, Z., Ren, W.: Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs. IEEE Trans. Autom. Control. 60(4), 1152–1157 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ma, H., Kumar, T.S., Koenig, S.: In: AAAI (ed.), pp. 3605–3612 (2017)Google Scholar
  14. 14.
    Paranjape, A.A., Meier, K.C., Shi, X., Chung, S.J., Hutchinson, S.: Motion primitives and 3d path planning for fast flight through a forest. Int. J. Robot. Res. 34(3), 357–377 (2015)CrossRefGoogle Scholar
  15. 15.
    Pola, G., Girard, A., Tabuada, P.: Approximately bisimilar symbolic models for nonlinear control systems. Automatica 44(10), 2508–2516 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ren, W., Beard, R.W., Atkins, E.M.: A survey of consensus problems in multi-agent coordination. In: Proceedings of the American Control Conference, 2005, pp. 1859–1864. IEEE (2005)Google Scholar
  17. 17.
    Sahin, Y.E., Nilsson, P., Ozay, N.: Provably-correct coordination of large collections of agents with counting temporal logic constraints. In: Proceedings of ICCPS, pp. 249–258. ACM (2017)Google Scholar
  18. 18.
    Sahin, Y.E., Nilsson, P., Ozay, N.: Synchronous and asynchronous multi-agent coordination with cltl+ constraints. In: Proceedings of CDC, pp. 335–342. IEEE (2017)Google Scholar
  19. 19.
    Shoukry, Y., Nuzzo, P., Balkan, A., Saha, I., Sangiovanni-Vincentelli, A.L., Seshia, S.A., Pappas, G.J., Tabuada, P.: Linear temporal logic motion planning for teams of underactuated robots using satisfiability modulo convex programming. In: Proceedings of CDC, pp. 1132–1137. IEEE (2017)Google Scholar
  20. 20.
    Surynek, P.: A novel approach to path planning for multiple robots in bi-connected graphs. In: Proceedings of ICRA, pp. 3613–3619. IEEE (2009)Google Scholar
  21. 21.
    de Wilde, B., ter Mors, A.W., Witteveen, C.: Push and rotate: cooperative multi-agent path planning. In: Proceedings of AAMAS, pp. 87–94 (2013)Google Scholar
  22. 22.
    Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H., Murray, R.M.: Tulip: a software toolbox for receding horizon temporal logic planning, pp. 313–314. ACM (2011)Google Scholar
  23. 23.
    Yu, J., LaValle, S.M.: Optimal multirobot path planning on graphs: complete algorithms and effective heuristics. IEEE Trans. Robot. 32(5), 1163–1177 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yunus Emre Sahin
    • 1
    Email author
  • Necmiye Ozay
    • 1
  • Stavros Tripakis
    • 2
    • 3
  1. 1.Electrical and Computer EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Department of Computer ScienceAalto UniversityEspooFinland
  3. 3.College of Computer and Information ScienceNortheastern UniversityBostonUSA

Personalised recommendations