Advertisement

Trust-Based Information Propagation on Multi-robot Teams in Noisy Low-Communication Environments

  • Kenneth BowersEmail author
  • Laura Strickland
  • Gregory Cooke
  • Charles Pippin
  • Theodore P. Pavlic
Conference paper
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 9)

Abstract

One of the challenging requirements of large multi-robot systems is scalable communication methods that are robust to noisy low-communication environments. On a multi-hop, wireless sensor network, it may be desirable for a node to issue a system-wide alert on detection of an event of interest. However, if there is a high false-positive rate, then system-wide false alarms may frequently occur. Giant honeybees (Apis dorsata) generate large-scale spiral waves triggered by the presence of a threat. Studies show that the initial seed of the waves and the re-transmission behavior are non-trivial and thus may be specially tuned for this low-communication scenario. Motivated by these adaptive patterns in giant honeybees, we develop a distributed approach for sharing awareness of critical events that is able to damp the propagation of false-alarm signals. We validate the algorithm’s performance for a WSN detecting a hostile UAV in the SCRIMMAGE simulation framework.

Keywords

Wireless sensor networks Trust Information cascade Rumor spreading Low communication SCRIMMAGE Multi-agent system 

Notes

Acknowledgements

This work was supported by DARPA under the Bio-Inspired Swarming seedling project, contract FA8651-17-F-1013.

References

  1. 1.
    Akdere, M., Bilgin, C.C., Gerdaneri, O., Korpeoglu, I., Ulusoy, Ö., Cetintemel, U.: A comparison of epidemic algorithms in wireless sensor networks. Comput. Commun. 29(13–14), 2450–2457 (2006)CrossRefGoogle Scholar
  2. 2.
    Al-Bahadili, H.: Trust determination in wireless ad hoc networks. In: Handbook of Research on Threat Detection and Countermeasures in Network Security, pp. 330–348. IGI Global (2015)Google Scholar
  3. 3.
    Altman, E., Kherani, A.A., Michiardi, P., Molva, R.: Non-cooperative forwarding in ad-hoc networks. In: International Conference on Research in Networking. pp. 486–498. Springer (2005)Google Scholar
  4. 4.
    Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J., Faloutsos, C.: Epidemic thresholds in real networks. ACM Trans. Inf. Syst. Secur. (TISSEC) 10(4), 1 (2008)CrossRefGoogle Scholar
  5. 5.
    DeMarco, K., Squires, E., Day, M., Pippin, C.: Simulating collaborative robots in a massive multi-agent game environment (scrimmage). In: International Symposium on Distributed Autonomous Robotic Systems (2018)Google Scholar
  6. 6.
    Farkas, I., Helbing, D., Vicsek, T.: Social behaviour: Mexican waves in an excitable medium. Nature 419(6903), 131–132 (2002)CrossRefGoogle Scholar
  7. 7.
    Gonçalves, S., Abramson, G., Gomes, M.F.: Oscillations in SIRS model with distributed delays. Eur. Phys. J. B 81(3), 363 (2011)CrossRefGoogle Scholar
  8. 8.
    Kastberger, G., Schmelzer, E., Kranner, I.: Social waves in giant honeybees repel hornets. PLoS ONE 3(9), e3141 (2008)CrossRefGoogle Scholar
  9. 9.
    Kastberger, G., Weihmann, F., Hoetzl, T.: Complex social waves of giant honeybees provoked by a dummy wasp support the special-agent hypothesis. Commun. Integr. Biol. 3(2), 179–180 (2010)CrossRefGoogle Scholar
  10. 10.
    Kastberger, G., Weihmann, F., Hoetzl, T., Weiss, S.E., Maurer, M., Kranner, I.: How to join a wave: decision-making processes in shimmering behavior of giant honeybees (Apis dorsata). PLoS ONE 7(5), e36736 (2012)CrossRefGoogle Scholar
  11. 11.
    Kastberger, G., Weihmann, F., Zierler, M., Hötzl, T.: Giant honeybees (Apis dorsata) mob wasps away from the nest by directed visual patterns. Naturwissenschaften 101(11), 861–873 (2014)CrossRefGoogle Scholar
  12. 12.
    Li, W., Parker, J., Joshi, A.: Security through collaboration and trust in MANETs. Mob. Netw. Appl. 17(3), 342–352 (2012)CrossRefGoogle Scholar
  13. 13.
    Pippin, C., Christensen, H.: Trust modeling in multi-robot patrolling. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 59–66. IEEE (2014)Google Scholar
  14. 14.
    Pippin, C.E.: Trust and reputation for formation and evolution of multi-robot teams (Nov 2013). https://smartech.gatech.edu/handle/1853/50376?show=full
  15. 15.
    Romman, A.A., Al-Bahadili, H.: Performance analysis of the neighbor weight trust determination algorithm in MANETsGoogle Scholar
  16. 16.
    Schmelzer, E., Kastberger, G.: ‘Special agents’ trigger social waves in giant honeybees (Apis dorsata). Naturwissenschaften 96(12), 1431–1441 (2009)CrossRefGoogle Scholar
  17. 17.
    Seeley, T.D., Seeley, R.H., Akratanakul, P.: Colony defense strategies of the honeybees in Thailand. Ecol. Monogr. 52(1), 43–63 (1982)CrossRefGoogle Scholar
  18. 18.
    Shakya, R.K.: Modified si epidemic model for combating virus spread in spatially correlated wireless sensor networks. arXiv:1801.04744 (2018)
  19. 19.
    Tang, S., Mark, B.L.: Analysis of virus spread in wireless sensor networks: an epidemic model. In: 7th International Workshop on Design of Reliable Communication Networks, 2009 (DRCN 2009), pp. 86–91. IEEE (2009)Google Scholar
  20. 20.
    UmaRani, V., Sundaram, K.S., Jayashree, D.: Enhanced beta trust model in wireless sensor networks. In: 2016 International Conference on Information Communication and Embedded Systems (ICICES), pp. 1–5. IEEE (2016)Google Scholar
  21. 21.
    van Ballegooijen, W.M., Boerlijst, M.C.: Emergent trade-offs and selection for outbreak frequency in spatial epidemics. Proc. Nat. Acad. Sci. 101(52), 18246–18250 (2004)CrossRefGoogle Scholar
  22. 22.
    Wang, Y., Chakrabarti, D., Wang, C., Faloutsos, C.: Epidemic spreading in real networks: an eigenvalue viewpoint. In: Proceedings of 22nd International Symposium on Reliable Distributed Systems, 2003, pp. 25–34. IEEE (2003)Google Scholar
  23. 23.
    Welch, J.L., Walter, J.E.: Link reversal algorithms. Synth. Lect. Distrib. Comput. Theory 2(3), 1–103 (2011)CrossRefGoogle Scholar
  24. 24.
    Zawaideh, F., Salamah, M., Al-Bahadili, H.: A fair trust-based malicious node detection and isolation scheme for WSNs. In: 2017 2nd International Conference on the Applications of Information Technology in Developing Renewable Energy Processes Systems (IT-DREPS), pp. 1–6, Dec 2017Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kenneth Bowers
    • 1
    Email author
  • Laura Strickland
    • 1
  • Gregory Cooke
    • 1
  • Charles Pippin
    • 1
  • Theodore P. Pavlic
    • 2
  1. 1.Georgia Tech Research InstituteAtlantaGeorgia
  2. 2.School of Computing, Informatics, and Decision Systems EngineeringArizona State UniversityTempeUSA

Personalised recommendations