Robust Trajectory Execution for Multi-robot Teams Using Distributed Real-time Replanning

  • Baskın ŞenbaşlarEmail author
  • Wolfgang Hönig
  • Nora Ayanian
Conference paper
Part of the Springer Proceedings in Advanced Robotics book series (SPAR, volume 9)


Robust trajectory execution is an extension of cooperative collision avoidance that takes pre-planned trajectories directly into account. We propose an algorithm for robust trajectory execution that compensates for a variety of dynamic changes, including newly appearing obstacles, robots breaking down, imperfect motion execution, and external disturbances. Robots do not communicate with each other and only sense other robots’ positions and the obstacles around them. At the high-level we use a hybrid planning strategy employing both discrete planning and trajectory optimization with a dynamic receding horizon approach. The discrete planner helps to avoid local minima, adjusts the planning horizon, and provides good initial guesses for the optimization stage. Trajectory optimization uses a quadratic programming formulation, where all safety-critical parts are formulated as hard constraints. At the low-level, we use buffered Voronoi cells as a multi-robot collision avoidance strategy. Compared to ORCA, our approach supports higher-order dynamic limits and avoids deadlocks better. We demonstrate our approach in simulation and on physical robots, showing that it can operate in real time.



This research was supported in part by Office of Naval Research grant N00014-14-1-073 and National Science Foundation grant 1724399. B. Şenbaşlar gratefully acknowledges the support from the Fulbright program sponsored by U.S. Department of State.


  1. 1.
    Alonso-Mora, J., Beardsley, P.A., Siegwart, R.: Cooperative collision avoidance for nonholonomic robots. IEEE Trans. Robot. (T-RO) 34(2), 404–420 (2018)CrossRefGoogle Scholar
  2. 2.
    van den Berg, J., Guy, S.J., Lin, M.C., Manocha, D.: Reciprocal n-body collision avoidance. In: International Symposium of Robotic Research (ISRR), pp. 3–19 (2009).
  3. 3.
    van den Berg, J.P., Lin, M.C., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1928–1935 (2008)Google Scholar
  4. 4.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)zbMATHGoogle Scholar
  5. 5.
    Debord, M., Hönig, W., Ayanian, N.: Trajectory planning for heterogeneous robot teams. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2018). accepted. To appearGoogle Scholar
  6. 6.
    Dresner, K.M., Stone, P.: A multiagent approach to autonomous intersection management. J. Artif. Intell. Res. (JAIR) 31, 591–656 (2008)CrossRefGoogle Scholar
  7. 7.
    Farouki, R.T.: The bernstein polynomial basis: a centennial retrospective. Comput. Aided Geom. Des. 29(6), 379–419 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ferreau, H.J., Kirches, C., Potschka, A., Bock, H.G., Diehl, M.: qpOASES: a parametric active-set algorithm for quadratic programming. Math. Program. Comput. 6(4), 327–363 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hönig, W., Preiss, J.A., Kumar, T.K.S., Sukhatme, G.S., Ayanian, N.: Trajectory planning for quadrotor swarms. IEEE Trans. Robot. (T-RO) 34(4), 856–869 (2018)CrossRefGoogle Scholar
  10. 10.
    Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Auton. Robot. 34(3), 189–206 (2013). http://octomap.github.comCrossRefGoogle Scholar
  11. 11.
    Mattingley, J., Boyd, S.: CVXGEN: a code generator for embedded convex optimization. Optim. Eng. 13(1), 1–27 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Morris, R., Pasareanu, C.S., Luckow, K.S., Malik, W., Ma, H., Kumar, T.K.S., Koenig, S.: Planning, scheduling and monitoring for airport surface operations. In: AAAI Workshop on Planning for Hybrid Systems. AAAI Workshops, vol. WS-16-12, pp. 608–614 (2016)Google Scholar
  13. 13.
    Oleynikova, H., Burri, M., Taylor, Z., Nieto, J.I., Siegwart, R., Galceran, E.: Continuous-time trajectory optimization for online UAV replanning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5332–5339 (2016)Google Scholar
  14. 14.
    Richter, C., Bry, A., Roy, N.: Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. In: International Symposium of Robotic Research (ISRR), pp. 649–666 (2013)Google Scholar
  15. 15.
    Stellato, B., Banjac, G., Goulart, P., Bemporad, A., Boyd, S.: OSQP: An operator splitting solver for quadratic programs. ArXiv e-prints, Jan 2018Google Scholar
  16. 16.
    Usenko, V.C., von Stumberg, L., Pangercic, A., Cremers, D.: Real-time trajectory replanning for MAVs using uniform B-splines and a 3D circular buffer. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 215–222 (2017)Google Scholar
  17. 17.
    Wang, L., Ames, A.D., Egerstedt, M.: Safety barrier certificates for collisions-free multirobot systems. IEEE Trans. Robot. (T-RO) 33(3), 661–674 (2017)CrossRefGoogle Scholar
  18. 18.
    Wurman, P.R., D’Andrea, R., Mountz, M.: Coordinating hundreds of cooperative, autonomous vehicles in warehouses. AI Mag. 29(1), 9–20 (2008)Google Scholar
  19. 19.
    Zhou, D., Wang, Z., Bandyopadhyay, S., Schwager, M.: Fast,: On-line collision avoidance for dynamic vehicles using buffered voronoi cells. IEEE Robot. Autom. Lett. (RA-L) 2(2), 1047–1054 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Baskın Şenbaşlar
    • 1
    Email author
  • Wolfgang Hönig
    • 1
  • Nora Ayanian
    • 1
  1. 1.University of Southern CaliforniaLos AngelesUSA

Personalised recommendations