Advertisement

The Conception, Requirements and Structure of the Integrated Computational Environment

  • V. P. Il’inEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 965)

Abstract

The general conception, main requirements and functional architecture of the integrated computational environment (ICE) for the high-performance mathematical modeling of a wide class of the multi-physics processes and phenomena on the modern and future postpetaflops supercomputers are considered. The new generation problems to be solved are described by the multi-dimensional direct and inverse statements for the systems of nonlinear differential and/or integral equations, as well as by variational and discrete inequalities. The objective of the ICE is to support all the main technological stages of large-scale computational experiments and to provide a permanent and extendable mathematical innovation structure for wide groups of the users from various fields, based on the advanced software and on integration of the external products. The technical requirements and architecture solutions of the project proposed are discussed.

Keywords

Mathematical modeling Integrated computational environment High performance Interdisciplinary direct inverse problems Numerical methods Program technologies 

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
    Intel R Mathematical Kernel Library. http://software.intel.com/en-us/intel-mkl
  6. 6.
    Schoberl, J.: Netgen-an advancing front 2D/3D-mesh generator based on abstract rules. Comput. Vizualization Sci. 1(1), 41–52 (1997)CrossRefGoogle Scholar
  7. 7.
  8. 8.
  9. 9.
  10. 10.
  11. 11.
    INMOST: A toolkit for distributed mathematical modelling. www.inmost.org
  12. 12.
    Il’in, V.P., Gladkih, V.S.: Basic system of modelling (BSM): the conception, architecture and methodology (in Russian). In: Proceedings of International Conference on Modern Problems of Mathematical Modelling, Image Processing and Parallel Computing, MPMMIP&PC-2017, pp. 151–158. DSTU Publ., Rostov-Don (2017)Google Scholar
  13. 13.
    Brugnano, L., Iavernano, F.: Line Integral Methods for Conservative Problems. CRC Press/Taylor & Francis Group, New York (2015)CrossRefGoogle Scholar
  14. 14.
    Il’in V.P.: Mathematical Modelling, Part I: Continuous and Discrete Models (in Russian). SBRAS Publ, Novosibirsk (2017)Google Scholar
  15. 15.
    Il’in, V.P.: Fundamental issues of mathematical modeling. Her. Russ. Acad. Sci. 86(2), 118–126 (2016)CrossRefGoogle Scholar
  16. 16.
    Il’in, V.P.: On the parallel strategies in mathematical modeling. In: Sokolinsky, L., Zymbler, M. (eds.) Parallel Computational Technologies. PCT 2017. CCIS, vol. 753, pp. 73–85. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-319-67035-5_6CrossRefGoogle Scholar
  17. 17.
    Delfour, M., Zolesio, J.-P.: Shape and Geometries. Metrics, Analysis Differential Calculus, and Optimization. SIAM Publications, Philadelphia (2011)zbMATHGoogle Scholar
  18. 18.
    Cottrell, J., Hughes, T., Bazilevs, Y.: Isogeometric Analysis. Towards Integration of CAD and FEA. Wiley, Singapore (2009)CrossRefGoogle Scholar
  19. 19.
    Il’in, V.P.: DELAUNAY: technological environment for grid generation (in Russian). Sib. J. Ind. Math. 16, 83–97 (2013)zbMATHGoogle Scholar
  20. 20.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2008).  https://doi.org/10.1007/978-0-387-75934-0CrossRefzbMATHGoogle Scholar
  21. 21.
    Riviere, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. Theory and Implementation. SIAM, Philadelphia (2008)CrossRefGoogle Scholar
  22. 22.
    Butyugin, D.S., Il’in, V.P.: CHEBYSHEV: the principles of automatical constructions of algorithms for grid approximations of initial-boundary value problems (in Russian). In: Proceedings of International Conference, PCT-2014, pp. 42–50. SUSU Publ., Chelyabinsk (2014)Google Scholar
  23. 23.
    Saad, Y.: Iterative Methods for Sparse Linear Systems. PWS Publ., New York (2002)Google Scholar
  24. 24.
    Dolean, V., Jolivet, P., Nataf, F.: An Introduction to Domain Decomposition Methods: Algorithms, Theory and Parallel Implementation. SIAM, Philadelphia (2015)CrossRefGoogle Scholar
  25. 25.
    Butyugin, D.S., Gurieva, Y.L., Il’in, V.P., Perevozkin, D.V., Petukhov, A.V.: Functionality and algebraic solvers technologies in Krylov library (in Russian). Vestnik YuUrGU. Ser. Comput. Math. Inform. 2(3), 92–105 (2013)Google Scholar
  26. 26.
    Il’in, V.P.: Problems of parallel solution of large systems of linear algebraic equations. J. Math. Sci. 216(6), 795–804 (2016)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Il’in, V.P.: On the numerical solution of the direct and inverse electromagnetic problems in geoprospecting (in Russian). Sib. J. Num. Math. 6(4), 381–394 (2003)Google Scholar
  28. 28.
    Forrester, A., Sobester, A., Keane, A.: Engineering Design via Surrogate Modeling. A Practical Guide. Wiley, New York (2008)CrossRefGoogle Scholar
  29. 29.
    Maloney, J.: Distributed COM Application Development Using Visual C++. Prentice Hall, New York (1999)Google Scholar
  30. 30.
    Kleppe, A.: Software Language Engineering: Creating Domain-Specific Language Using Metamodels. Addison-Wesley, New York (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Computational Mathematics and Mathematical Geophysics, SBRASNovosibirsk State UniversityNovosibirskRussia

Personalised recommendations