Advertisement

Supercomputer Real-Time Experimental Data Processing: Technology and Applications

  • Vladislav A. ShchapovEmail author
  • Alexander M. Pavlinov
  • Elena N. Popova
  • Andrei N. Sukhanovskii
  • Stanislav L. Kalyulin
  • Vladimir Ya. Modorskii
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 965)

Abstract

The study is focused on the technology of remote real-time processing of intensive data streams from experimental stands using supercomputers. The structure of distributing data system, software for data processing, optimized PIV algorithm are presented. Using of real-time data processing makes possible realization of experiments with feedback when external forcing depends on internal characteristics of the system. Approbation of this technique is demonstrated on experimental study of intensive cyclonic vortex formation from localized heat source in a rotating layer of fluid. In this study the heating intensity depends on velocity of the flow. The characteristics of the flow obtained by supercomputer real-time processing of PIV images are used as input parameters for the heating system. The concept of using developed technology in the experimental stands of aircraft industry is also described.

Keywords

Supercomputer Experimental data processing PIV SciMQ Laboratory analog of tropical cyclone Feedback 

References

  1. 1.
    Bogatyrev, G.P.: Excitation of cyclonic vortex or laboratory model of tropical cyclone. Sov. J. Exp. Theor. Phys. Lett. 51(11), 630 (1990)Google Scholar
  2. 2.
    Batalov, V., Sukhanovsky, A., Frick, P.: Laboratory study of differential rotation in a convective rotating layer. J. Geophys. Astrophys. Fluid Dyn. 104(4), 349–368 (2010).  https://doi.org/10.1080/03091921003759876CrossRefGoogle Scholar
  3. 3.
    Sukhanovskii, A., Evgrafova, A., Popova, E.: Laboratory study of a steady-state convective cyclonic vortex. Q. J. R. Meteorol. Soc. 142(698), 2214–2223 (2016).  https://doi.org/10.1002/qj.2823CrossRefGoogle Scholar
  4. 4.
    Sukhanovskii, A., Evgrafova, A., Popova, E.: Non-axisymmetric structure of the boundary layer of intensive cyclonic vortex. Dyn. Atmos. Oceans 80, 12–28 (2017).  https://doi.org/10.1016/j.dynatmoce.2017.08.001CrossRefGoogle Scholar
  5. 5.
    Kreizer, M., Ratner, D., Liberzon, A.: Real-time image processing for particle tracking velocimetry. Exp. Fluids 48(1), 105–110 (2010)CrossRefGoogle Scholar
  6. 6.
    Willert, C.E., Munson, M.J., Gharib, M.: Real-time particle image velocimetry for closed-loop flow control applications. In: 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics (2010)Google Scholar
  7. 7.
    Yu, H., Leeser, M., Tadmor, G., Siegel, S.: Real-time particle image velocimetry for feedback loops using FPGA implementation. J. Aerosp. Comput. Inf., Commun. 3(2), 52–62 (2006)CrossRefGoogle Scholar
  8. 8.
    Gautier, N., Aider, J.L.: Real-time planar flow velocity measurements using an optical flow algorithm implemented on GPU. J. Vis. 18(2), 277–286 (2015)CrossRefGoogle Scholar
  9. 9.
    Shchapov, V.A., Masich, A.G., Masich, G.F.: The technology of processing intensive structured dataflow on a supercomputer. J. Syst. Softw. 127, 258–265 (2017).  https://doi.org/10.1016/j.jss.2016.07.003CrossRefGoogle Scholar
  10. 10.
    Masich, G., Shchapov, V.: The software platform of transmission of intense data streams on remote supercomputers. In: CEUR Workshop Proceedings, vol. 1482, pp. 720–731 (2015)Google Scholar
  11. 11.
    Shchapov, V., Masich, G., Masich, A.: Platform for parallel processing of intense experimental data flow on remote supercomputers. Procedia Comput. Sci. 66, 515–524 (2015).  https://doi.org/10.1016/j.procs.2015.11.058CrossRefGoogle Scholar
  12. 12.
    Thielicke, W., Stamhuis, E.J.: PIVlab - towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. 2(1), e30 (2014).  https://doi.org/10.5334/jors.blCrossRefGoogle Scholar
  13. 13.
    Kalyulin, S.L., Shavrina, E.V., Modorskii, V.Y., Barkalov, K.A., Gergel, V.P.: Optimization of drop characteristics in a carrier cooled gas stream using ANSYS and globalizer software systems on the PNRPU high-performance cluster. In: Sokolinsky, L., Zymbler, M. (eds.) PCT 2017. CCIS, vol. 753, pp. 331–345. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67035-5_24CrossRefGoogle Scholar
  14. 14.
    Kalyulin, S.L.: Numerical design of the rectifying lattices in a small-sized wind tunnel. In: Kalyulin, S.L., Modorskii, V.Ya., Paduchev, A.P. (ed.) AIP Conference Proceedings - 2016, vol. 1770, Article no. 030110 (2016)Google Scholar
  15. 15.
    Modorskii, V.Ya.: Research of aerohydrodynamic and aeroelastic processes on PNRPU HPC system. In: Modorskii, V.Ya., Shevelev, N.A. (ed.) AIP Conference Proceedings - 2016, vol. 1770, Article no. 020001 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Continuous Media Mechanics of the Ural Branch of Russian Academy of SciencePermRussia
  2. 2.Perm National Research Polytechnic UniversityPermRussia

Personalised recommendations