Advertisement

Designing a Parallel Programs on the Base of the Conception of Q-Determinant

  • Valentina AleevaEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 965)

Abstract

The paper describes a design method of parallel programs for numerical algorithms based on their representation in the form of Q-determinant. The result of the method is Q-effective program. It uses the parallelism resource of the algorithm completely. The results of this research can be applied to increase the implementation efficiency of algorithms on parallel computing systems. This should help to improve the performance of parallel computing systems.

Keywords

Q-determinant of algorithm Algorithm representation as Q-determinant Q-effective implementation of algorithm Parallelism resource of algorithm Parallel computing system Parallel program Q-effective program 

Notes

Acknowledgements

The reported study was funded by RFBR according to the research project No 17-07-00865 à. The work was supported by Act 211 Government of the Russian Federation, contract No 02.A03.21.0011.

References

  1. 1.
    Aleeva, V.N.: Analysis of parallel numerical algorithms: Preprint No. 590. Novosibirsk, Computing Center of the Siberian Branch of the Academy of Sciences of the USSR (1985)Google Scholar
  2. 2.
    Ignatyev, S.V.: Definition of parallelism resource of algorithms on the base of the concept of \(Q\)-determinant. In: Scientific Service on the Internet: Supercomputer Centers and Tasks: Proceedings of the International Supercomputer Conference, Novorossijsk, Russia, September 20–25, 2010, pp. 590–595. Publishing of the Moscow State University, Moscow (2010)Google Scholar
  3. 3.
    Svirihin, D.I.: Definition of parallelism resource of algorithm and its effective use for of a finite number of processors. In: Scientific Service on the Internet: the Search for New Solutions: Proceedings of the International Supercomputer Conference, Novorossijsk, Russia, September 17–22, 2012, pp. 257–260. Publishing of the Moscow State University, Moscow (2012)Google Scholar
  4. 4.
    Svirihin, D.I., Aleeva, V.N.: Definition the maximum effective realization of algorithm on the base of the conception of \(Q\)-determinant. In: Parallel Computational Technologies (PCT’2013): Proceedings of the International Scientific Conference, Chelyabinsk, Russia, April 1–5, 2013, p. 617. Publishing of the South Ural State University, Chelyabinsk (2013)Google Scholar
  5. 5.
    Aleeva, V.N.: The parallelization of algorithms on the base of the conception of \(Q\)-determinant. In: Groups and Graphs, Algorithms and Automata, 2015: Abstracts of the International Conference and PhD Summer School of the 80th Birthday of Professor Vyacheslav A. Belonogov and of the 70th Birthday of Professor Vitaly A. Baransky (Yekaterinburg, Russia, August 9–15, 2015), p. 33. UrFU Publishing house, Yekaterinburg (2015)Google Scholar
  6. 6.
    Aleeva, V.N., Sharabura, I.S., Suleymanov, D.E.: Software system for maximal parallelization of algorithms on the base of the conception of Q-determinant. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 3–9. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21909-7_1CrossRefGoogle Scholar
  7. 7.
    Voevodin, V.V., Voevodin, V.V.: The V-ray technology of optimizing programs to parallel computers. In: Vulkov, L., Waśniewski, J., Yalamov, P. (eds.) WNAA 1996. LNCS, vol. 1196, pp. 546–556. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-62598-4_136CrossRefGoogle Scholar
  8. 8.
    Voevodin, V.V., Voevodin, V.V.: Parallel computing. BHV-Petersburg, St. Petersburg (2002). (in Russian)Google Scholar
  9. 9.
  10. 10.
    Voevodin, V.V.: Parallel algorithms under the microscope. In: Parallel Computational Technologies (PCT’2016): Report on the International Scientific Conference, Arkhangelsk, Russia, March 28–April 1 2016. http://omega.sp.susu.ru/books/conference/PaVT2016/talks/Voevodin.pdf
  11. 11.
    Gurieva, Y.L., Il’in, V.P.: On parallel computational technologies of augmented domain decomposition methods. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 35–46. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21909-7_4CrossRefGoogle Scholar
  12. 12.
    Suplatov, D.A., Voevodin, V.V., Svedas, V.K.: Robust enzyme design: bioinformatic tools for improved protein stability. Biotechnol. J. 10(3), 344–355 (2015).  https://doi.org/10.1002/biot.201400150CrossRefGoogle Scholar
  13. 13.
    Venkata, M.G., Shamis, P., Sampath, R., Graham, R.L., Ladd, J.S.: Optimizing blocking and nonblocking reduction operations for multicore systems: hierarchical design and implementation. In: Proceedings of IEEE Cluster, pp. 1–8 (2013)Google Scholar
  14. 14.
    Malyshkin, V.E., Perepelkin, V.A., Schukin, G.A.: Distributed algorithm of data allocation in the fragmented programming system LuNA. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 80–85. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21909-7_8CrossRefGoogle Scholar
  15. 15.
    Malyshkin, V.E., Perepelkin, V.A., Tkacheva, A.A.: Control flow usage to improve performance of fragmented programs execution. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 86–90. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21909-7_9CrossRefGoogle Scholar
  16. 16.
    Legalov, A.I.: Functional language for creating architecturally independent parallel programs. Comput. Technol. 1(10), 71–89 (2005). (in Russian)zbMATHGoogle Scholar
  17. 17.
    McColl, W.F.: General purpose parallel computing. In: Lectures on Parallel Computation. Cambridge International Series on Parallel Computation, pp. 337–391. Cambridge University Press, Cambridge (1993)Google Scholar
  18. 18.
    Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8), 103–111 (1990)CrossRefGoogle Scholar
  19. 19.
    Val’kevich, N.V.: \(Q\)-effective implementation of the algorithm for matrix multiplication on a supercomputer “Tornado SUSU”: Graduate qualification work of bachelor in direction “Fundamental informatics and information technology”: 02.03.02. 32 s. South Ural State University, Chelyabinsk (2017). http://omega.sp.susu.ru/publications/bachelorthesis/17-Valkevich.pdf
  20. 20.
    Tarasov, D.E.: \(Q\)-effective co-design of realization of the Gauss-Jordan method on the supercomputer “Tornado SUSU”: Graduate qualification work of master in direction “Fundamental informatics and information technology”: 02.04.02. 41 s. South Ural State University, Chelyabinsk (2017). http://omega.sp.susu.ru/publications/masterthesis/17-Tarasov.pdf
  21. 21.
    Lapteva, Yu.S.: \(Q\)-effective implementation of the Jacobi method for solving SLAE on the supercomputer “Tornado SUSU”: Graduate qualification work of bachelor in direction “Fundamental informatics and information technology”: 02.03.02. 30 s. South Ural State University, Chelyabinsk (2017). http://omega.sp.susu.ru/publications/bachelorthesis/17-Lapteva.pdf

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.South Ural State University (National Research University)ChelyabinskRussia

Personalised recommendations