Advertisement

Deploying Elbrus VLIW CPU Ecosystem for Materials Science Calculations: Performance and Problems

  • Vladimir Stegailov
  • Alexey Timofeev
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 965)

Abstract

Modern Elbrus-4S and Elbrus-8S processors show floating point performance comparable to the popular Intel processors in the field of high-performance computing. Tasks oriented to take advantage of the VLIW architecture show even greater efficiency on Elbrus processors. In this paper the efficiency of the most popular materials science codes in the field of classical molecular dynamics and quantum-mechanical calculations is considered. A comparative analysis of the performance of these codes on Elbrus processor and other modern processors is carried out.

Keywords

Elbrus architecture VASP LAMMPS FFT 

Notes

Acknowledgments

The authors acknowledge Joint Supercomputer Centre of Russian Academy of Sciences (http://www.jscc.ru) for the access to the supercomputer MVS1P5. The authors acknowledge JSC MCST (http://www.msct.ru) for the access to the servers with Elbrus CPUs. The authors are grateful to Vyacheslav Vecher for the help with calculations based on hardware counters.

The work was supported by the grant No. 14-50-00124 of the Russian Science Foundation.

References

  1. 1.
    Tyutlyaeva, E., Konyukhov, S., Odintsov, I., Moskovsky, A.: The elbrus platform feasibility assessment for high-performance computations. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2016. CCIS, vol. 687, pp. 333–344. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-55669-7_26CrossRefGoogle Scholar
  2. 2.
    Kozhin, A.S., et al.: The 5th generation 28nm 8-Core VLIW Elbrus-8C processor architecture. In: Proceedings - 2016 International Conference on Engineering and Telecommunication, EnT 2016, pp. 86–90 (2017).  https://doi.org/10.1109/EnT.2016.25
  3. 3.
    Kresse, G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).  https://doi.org/10.1103/PhysRevB.47.558CrossRefGoogle Scholar
  4. 4.
    Kresse, G., Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).  https://doi.org/10.1103/PhysRevB.49.14251CrossRefGoogle Scholar
  5. 5.
    Kresse, G., Furthmuller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 15–50 (1996).  https://doi.org/10.1016/0927-0256(96)00008-0CrossRefGoogle Scholar
  6. 6.
    Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).  https://doi.org/10.1103/PhysRevB.54.11169CrossRefGoogle Scholar
  7. 7.
    Stegailov, V.V., Orekhov, N.D., Smirnov, G.S.: HPC hardware efficiency for quantum and classical molecular dynamics. In: Malyshkin, V. (ed.) PaCT 2015. LNCS, vol. 9251, pp. 469–473. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21909-7_45CrossRefGoogle Scholar
  8. 8.
    Aristova, N.M., Belov, G.V.: Refining the thermodynamic functions of scandium triflouride scf3 in the condensed state. Russ. J. Phys. Chem. A 90(3), 700–703 (2016).  https://doi.org/10.1134/S0036024416030031CrossRefGoogle Scholar
  9. 9.
    Kochikov, I.V., Kovtun, D.M., Tarasov, Y.I.: Electron diffraction analysis for the molecules with degenerate large amplitude motions: intramolecular dynamics in arsenic pentafluoride. J. Mol. Struct. 1132, 139–148 (2017).  https://doi.org/10.1016/j.molstruc.2016.09.064CrossRefGoogle Scholar
  10. 10.
    Minakov, D.V., Levashov, P.R.: Melting curves of metals with excited electrons in the quasiharmonic approximation. Phys. Rev. B 92, 224,102 (2015).  https://doi.org/10.1103/PhysRevB.92.224102CrossRefGoogle Scholar
  11. 11.
    Minakov, D., Levashov, P.: Thermodynamic properties of lid under compression with different pseudopotentials for lithium. Comput. Mater. Sci. 114, 128–134 (2016).  https://doi.org/10.1016/j.commatsci.2015.12.008CrossRefGoogle Scholar
  12. 12.
    Bethune, I.: Ab initio molecular dynamics. Introduction to Molecular Dynamics on ARCHER (2015)Google Scholar
  13. 13.
    Hutchinson, M.: Vasp on gpus. when and how. GPU technology theater, SC15 (2015)Google Scholar
  14. 14.
    Zhao, Z., Marsman, M.: Estimating the performance impact of the MCDRAM on KNL using dual-socket Ivy Bridge nodes on Cray XC30. In: Proceedings of the Cray User Group — 2016 (2016)Google Scholar
  15. 15.
    Wende, F., Marsman, M., Steinke, T.: On enhancing 3D-FFT performance in VASP. In: CUG Proceedings, p. 9 (2016)Google Scholar
  16. 16.
    Burtscher, M., Kim, B.D., Diamond, J., McCalpin, J., Koesterke, L., Browne, J.: Perfexpert: an easy-to-use performance diagnosis tool for HPC applications. In: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2010, pp. 1–11. IEEE Computer Society, Washington, DC (2010).  https://doi.org/10.1109/SC.2010.41
  17. 17.
    Rane, A., Browne, J.: Enhancing performance optimization of multicore/multichip nodes with data structure metrics. ACM Trans. Parallel Comput. 1(1), 3:1–3:20 (2014).  https://doi.org/10.1145/2588788CrossRefGoogle Scholar
  18. 18.
    Stanisic, L., Mello Schnorr, L.C., Degomme, A., Heinrich, F.C., Legrand, A., Videau, B.: Characterizing the performance of modern architectures through opaque benchmarks: pitfalls learned the hard way. In: IPDPS 2017–31st IEEE International Parallel & Distributed Processing Symposium (RepPar Workshop), Orlando, US, pp. 1588–1597 (2017)Google Scholar
  19. 19.
    Baker, M.: A study of improving the parallel performance of VASP. Ph.D. thesis, East Tennessee State University (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Joint Institute for High Temperatures of the Russian Academy of SciencesMoscowRussia
  2. 2.National Research University Higher School of EconomicsMoscowRussia
  3. 3.Moscow Institute of Physics and Technology (State University)DolgoprudnyRussia

Personalised recommendations