Advertisement

BOINC-Based Branch-and-Bound

  • Andrei IgnatovEmail author
  • Mikhail Posypkin
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 965)

Abstract

The paper proposes an implementation of the Branch-and-Bound method for an enterprise grid based on the BOINC infrastructure. The load distribution strategy and the overall structure of the developed system are described with special attention payed to some specific issues such as incumbent updating and load distribution. The implemented system was experimentally tested on a moderate size enterprise grid. The achieved results demonstrate an adequate efficiency of the proposed approach.

Keywords

BOINC Branch and Bound Distributed computing 

Notes

Acknowledgements

The work was supported by the RAS Presidium program No. 26 “Fundamentals of algorithms and software development for advanced ultra-high-performance computing.” Authors are grateful to the head of supercomputer department of Federal Research Center “Computer Science and Control” Vadim Kondrashov and members of this department Ilya Kurochkin and Alexander Albertyan for helping in deploying and maintaining test BOINC grid.

References

  1. 1.
    The BOINC Wrapper (2008). http://boinc.berkeley.edu/trac/wiki/WrapperApp/. Accessed 15 May 2018
  2. 2.
    Box-constrained test problems collection (2017. https://github.com/alusov/mathexplib.git. Accessed 17 June 2018
  3. 3.
    BnB BOINC project codes (2018). https://github.com/AndrewWhyNot/BOINC-Interval-Based-BnB.git. Accessed 17 June 2018
  4. 4.
    Afanasiev, A., Evtushenko, Y., Posypkin, M.: The layered software infrastructure for solving large-scale optimization problems on the grid. Int. J. Comput. Res. 18(3/4), 307 (2011)Google Scholar
  5. 5.
    Aida, K., Natsume, W., Futakata, Y.: Distributed computing with hierarchical master-worker paradigm forparallel branch and bound algorithm. In: 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid 2003. Proceedings, CCGrid2003, pp. 156–163. IEEE (2003)Google Scholar
  6. 6.
    Alba, E., et al.: MALLBA: a library of skeletons for combinatorial optimisation. In: Monien, B., Feldmann, R. (eds.) Euro-Par 2002. LNCS, vol. 2400, pp. 927–932. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45706-2_132CrossRefGoogle Scholar
  7. 7.
    Anderson, D.P.: BOINC: a system for public-resource computing and storage. In: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing, pp. 4–10. IEEE Computer Society (2004)Google Scholar
  8. 8.
    Anstreicher, K., Brixius, N., Goux, J.-P., Linderoth, J.: Solving large quadratic assignment problems on computational grids. Math. Program. 91(3), 563–588 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Elf, M., Gutwenger, C., Jünger, M., Rinaldi, G.: Branch-and-cut algorithms for combinatorial optimization and their implementation in ABACUS. In: Jünger, M., Naddef, D. (eds.) Computational Combinatorial Optimization. LNCS, vol. 2241, pp. 157–222. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45586-8_5CrossRefzbMATHGoogle Scholar
  10. 10.
    Evtushenko, Y., Posypkin, M., Rybak, L., Turkin, A.: Approximating a solution set of nonlinear inequalities. J. Global Optim. 71, 1–17 (2017)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Evtushenko, Y., Posypkin, M., Sigal, I.: A framework for parallel large-scale global optimization. Comput. Sci. Res. Dev. 23(3–4), 211–215 (2009)CrossRefGoogle Scholar
  12. 12.
    Fang, W., Beckert, U.: Parallel tree search in volunteer computing: a case study. J. Grid Comput. 16, 1–16 (2017)Google Scholar
  13. 13.
    Ivashko, E.E.: Enterprise desktop grids. Programmnye Sistemy: Teoriya i Prilozheniya [Program Systems: Theory and Applications] 1, 19 (2014)Google Scholar
  14. 14.
    Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. With Examples in Parameter and State Estimation, Robust Control and Robotics, vol. 1. Springer, London (2001).  https://doi.org/10.1007/978-1-4471-0249-6CrossRefzbMATHGoogle Scholar
  15. 15.
    Samtsevich, A., Posypkin, M., Sukhomlin, V., Khrapov, N., Rozen, V., Oganov, A.: Using virtualization to protect the proprietary material science applications in volunteer computing. Open Eng. 8(1), 57–60 (2017)Google Scholar
  16. 16.
    Litzkow, M.J., Livny, M., Mutka, M.W.: Condor-a hunter of idle workstations. In: 8th International Conference on Distributed Computing Systems 1988, pp. 104–111. IEEE (1988)Google Scholar
  17. 17.
    Marosi, A.C., Balaton, Z., Kacsuk, P.: Genwrapper: a generic wrapper for running legacy applications ondesktop grids. In: IEEE International Symposium on Parallel & Distributed Processing 2009. IPDPS 2009, pp. 1–6. IEEE (2009)Google Scholar
  18. 18.
    Posypkin, M., Usov, A.: Implementation and verification of global optimization benchmark problems. Open Eng. 7(1), 470–478 (2017)CrossRefGoogle Scholar
  19. 19.
    Semenov, A., Zaikin, O., Bespalov, D., Posypkin, M.: Parallel logical cryptanalysis of the generator A5/1 in BNB-grid system. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 473–483. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23178-0_43CrossRefzbMATHGoogle Scholar
  20. 20.
    Smirnov, S., Voloshinov, V., Sukhoroslov, O.: Distributed optimization on the base of AMPL modeling language and everest platform. Procedia Comput. Sci. 101, 313–322 (2016)CrossRefGoogle Scholar
  21. 21.
    Sukhoroslov, O., Volkov, S., Afanasiev, A.: A web-based platform for publication and distributed execution of computing applications. In: 2015 14th International Symposium on Parallel and Distributed Computing (ISPDC), pp. 175–184. IEEE (2015)Google Scholar
  22. 22.
    Tlan, B., Posypkin, M.: Efficient implementation of branch-and-bound method on desktop grids. Comput. Sci. 15(3), 239–252 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Federal Research Center Computer Science and Control of Russian Academy of SciencesMoscowRussia

Personalised recommendations