Advertisement

The Parallel Hydrodynamic Code for Astrophysical Flow with Stellar Equations of State

  • Igor KulikovEmail author
  • Igor Chernykh
  • Vitaly Vshivkov
  • Vladimir Prigarin
  • Vladimir Mironov
  • Alexander Tutukov
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 965)

Abstract

In this paper, a new calculation method for numerical simulation of astrophysical flow at the supercomputers is described. The co-design of parallel numerical algorithms for astrophysical simulations is described in detail. The hydrodynamical numerical model with stellar equations of state (EOS), numerical methods for solving the hyperbolic equations and a short description of the parallel implementation of the code are described. For problems using large amounts of RAM, for example, the collapse of a molecular cloud core, our code upgraded for Intel Memory Drive Technology (IMDT) support. In this paper, we present the results of some IMDT performance tests based on Siberian Supercomputer Center facilities equipped with Intel Optane Memory. The results of numerical experiments of hydrodynamical simulations of the model stellar explosion are presented.

Keywords

Computational astrophysics Intel Xeon Phi Numerical methods 

Notes

Acknowledgements

The research work was supported by the Grant of the Russian Science Foundation (project 18-11-00044).

References

  1. 1.
    Katz, M., Zingale, M., Calder, A., Douglas Swesty, F., Almgren, A., Zhang, W.: White dwarf mergers on adaptive meshes. I. methodology and code verification. Astrophys. J. 819(2), 94 (2016)Google Scholar
  2. 2.
    Pearcea, F.R., Couchman, H.M.P.: Hydra: a parallel adaptive grid code. New Astron. 2, 411 (1997)CrossRefGoogle Scholar
  3. 3.
    Wadsley, J.W., Stadel, J., Quinn, T.: Gasoline: a flexible, parallel implementation of TreeSPH. New Astron. 9, 137 (2004)CrossRefGoogle Scholar
  4. 4.
    Matthias, S.: GRAPESPH: cosmological smoothed particle hydrodynamics simulations with the special-purpose hardware GRAPE. Mon. Not. R. Astron. Soc. 278, 1005 (1996)CrossRefGoogle Scholar
  5. 5.
    Springel, V.: The cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. 364, 1105 (2005)CrossRefGoogle Scholar
  6. 6.
    Ziegler, U.: Self-gravitational adaptive mesh magnetohydrodynamics with the NIRVANA code. Astron. Astrophys. 435, 385 (2005)CrossRefGoogle Scholar
  7. 7.
    Mignone, A., Plewa, T., Bodo, G.: The piecewise parabolic method for multidimensional relativistic fluid dynamics. Astrophys. J. 160, 199 (2005)CrossRefGoogle Scholar
  8. 8.
    Hayes, J., Norman, M., Fiedler, R., et al.: Simulating radiating and magnetized flows in multiple dimensions with ZEUS-MP. Astrophys. J. Suppl. Ser. 165, 188 (2006)CrossRefGoogle Scholar
  9. 9.
    O’Shea, B., et al.: Adaptive mesh refinement - theory and applications. Lect. Not. Comput. Sci. Eng. 41, 341 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Teyssier, R.: Cosmological hydrodynamics with adaptive mesh refinement-A new high resolution code called RAMSES. Astron. Astrophys. 385, 337 (2002)CrossRefGoogle Scholar
  11. 11.
    Kravtsov, A., Klypin, A., Hoffman, Y.: Constrained simulations of the real universe. II. Observational signatures of intergalactic gas in the local supercluster region. Astrophys. J. 571, 563 (2002)Google Scholar
  12. 12.
    Stone, J., Gardiner, T., Teuben, P., Hawley, J., Simon, J.: Athena: a new code for astrophysical MHD. Astrophys. J. Suppl. Ser. 178, 137 (2008)CrossRefGoogle Scholar
  13. 13.
    Brandenburg, A., Dobler, W.: Hydromagnetic turbulence in computer simulations. Comput. Phys. Commun. 147, 471 (2002)CrossRefGoogle Scholar
  14. 14.
    Gonzalez, M., Audit, E., Huynh, P.: HERACLES: a three-dimensional radiation hydrodynamics code. Astron. Astrophys. 464, 429 (2007)CrossRefGoogle Scholar
  15. 15.
    Krumholz, M.R., Klein, R.I., McKee, C.F., Bolstad, J.: Equations and algorithms for mixed-frame flux-limited diffusion radiation hydrodynamics. Astrophys. J. 667, 626 (2007)CrossRefGoogle Scholar
  16. 16.
    Mignone, A., et al.: PLUTO: a numerical code for computational astrophysics. Astrophys. J. Suppl. Ser. 170, 228 (2007)CrossRefGoogle Scholar
  17. 17.
    Almgren, A., Beckner, V., Bell, J., et al.: CASTRO: a new compressible astrophysical solver. I. Hydrodynamics and self-gravity. Astrophys. J. 715, 1221 (2010)Google Scholar
  18. 18.
    Schive, H., Tsai, Y., Chiueh, T.: GAMER: a GPU-accelerated adaptive-mesh-refinement code for astrophysics. Astrophys. J. 186, 457 (2010)CrossRefGoogle Scholar
  19. 19.
    Murphy, J., Burrows, A.: BETHE-Hydro: an arbitrary Lagrangian-Eulerian multidimensional hydrodynamics code for astrophysical simulations. Astrophys. J. Suppl. Ser. 179, 209 (2008)CrossRefGoogle Scholar
  20. 20.
    Springel, V.: E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon. Not. R. Astron. Soc. 401, 791 (2010)CrossRefGoogle Scholar
  21. 21.
    Bruenn, S., Mezzacappa, A., Hix, W., et al.: 2D and 3D core-collapse supernovae simulation results obtained with the CHIMERA code. J. Phys. 180, 012018 (2009)Google Scholar
  22. 22.
    Hopkins, P.: A new class of accurate, mesh-free hydrodynamic simulation methods. Mon. Not. R. Astron. Soc. 450, 53 (2015)CrossRefGoogle Scholar
  23. 23.
    Kulikov, I.: GPUPEGAS: A new GPU-accelerated hydrodynamic code for numerical simulations of interacting galaxies. Astrophys. J. Suppl. Ser. 214(1), 12 (2014)CrossRefGoogle Scholar
  24. 24.
    Kulikov, I.M., Chernykh, I.G., Snytnikov, A.V., Glinskiy, B.M., Tutukov, A.V.: AstroPhi: a code for complex simulation of dynamics of astrophysical objects using hybrid supercomputers. Comput. Phys. Commun. 186, 71–80 (2015)CrossRefGoogle Scholar
  25. 25.
    Tutukov, A., Lazareva, G., Kulikov, I.: Gas dynamics of a central collision of two galaxies: merger, disruption, passage, and the formation of a new galaxy. Astron. Rep. 55(9), 770–783 (2011)CrossRefGoogle Scholar
  26. 26.
    Vshivkov, V., Lazareva, G., Snytnikov, A., Kulikov, I.: Supercomputer simulation of an astrophysical object collapse by the fluids-in-cell method. Lect. Not. Comput. Sci. 5698, 414–422 (2009)CrossRefGoogle Scholar
  27. 27.
    Godunov, S., Kulikov, I.: Computation of discontinuous solutions of fluid dynamics equations with entropy nondecrease guarantee. Comput. Math. Math. Phys. 54, 1012–1024 (2014)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Vshivkov, V., Lazareva, G., Snytnikov, A., Kulikov, I., Tutukov, A.: Hydrodynamical code for numerical simulation of the gas components of colliding galaxies. Astrophys. J. Suppl. Ser. 194(47), 1–12 (2011)Google Scholar
  29. 29.
    Vshivkov, V., Lazareva, G., Snytnikov, A., Kulikov, I., Tutukov, A.: Computational methods for ill-posed problems of gravitational gasodynamics. J. Inverse Ill-posed Prob. 19(1), 151–166 (2011)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Kulikov, I., Vorobyov, E.: Using the PPML approach for constructing a low-dissipation, operator-splitting scheme for numerical simulations of hydrodynamic flows. J. Comput. Phys. 317, 318–346 (2016)MathSciNetCrossRefGoogle Scholar
  31. 31.
  32. 32.
    Glinskiy, B., Kulikov, I., Chernykh, I.: Improving the performance of an AstroPhi code for massively parallel supercomputers using roofline analysis. Commun. Comput. Inf. Sci. 793, 400–406 (2017)Google Scholar
  33. 33.
    Kulikov, I., Chernykh, I., Glinskiy, B., Protasov, V.: An efficient optimization of Hll method for the second generation of Intel Xeon Phi Processor. Lobachevskii J. Math. 39(4), 543–550 (2018)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Markets analytics. https://www.trendforce.com/
  35. 35.
    RSC Tornado architecture. http://www.rscgroup.ru/en/our-solutions
  36. 36.

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Igor Kulikov
    • 1
    Email author
  • Igor Chernykh
    • 1
  • Vitaly Vshivkov
    • 1
  • Vladimir Prigarin
    • 2
  • Vladimir Mironov
    • 3
  • Alexander Tutukov
    • 4
  1. 1.Institute of Computational Mathematics and Mathematical Geophysics SB RASNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia
  3. 3.Lomonosov Moscow State UniversityMoscowRussia
  4. 4.Institute of Astronomy RASMoscowRussia

Personalised recommendations