Parallel Supercomputer Docking Program of the New Generation: Finding Low Energy Minima Spectrum

  • Alexey Sulimov
  • Danil Kutov
  • Vladimir Sulimov
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 965)


The results of studies of the energy surfaces of the protein-ligand complexes carried out with the help of the FLM docking program belonging to the new generation of gridless docking programs are presented. It is demonstrated that the ability of the FLM docking program to find the global energy minimum is much higher than one of the “classical” SOL docking program using the genetic algorithm and the preliminary calculated grid of potentials of ligand atoms interactions with the target protein. The optimal number of FLM local optimization reliable finding of the global energy minimum and all local minima with energies in the 2 kcal/mol interval above the energy of the global minimum is found. This number is 250 thousand. For complexes with the ligand containing more than 60 atoms and having more than 12 torsions and with more than protein 4500 protein atoms the number of FLM local optimizations should be noticeably increased. There are several unique energy minima in this energy interval and for most complexes these minima are located near (RMSD < 3 \( {\AA} \)) the global minimum. However, there a complexes where such minima are located far from the global minimum with RMSD (on all ligand atoms) > 5  \( {\AA} \).


Generalized docking Local optimization Global minimum Low-energy local minima spectrum High-performance computing Molecular modeling Drug design 



The work was financially supported by the Russian Science Foundation, Agreement no. 15-11-00025-П. The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University, including the Lomonosov supercomputer [24].


  1. 1.
    Sliwoski, G., Kothiwale, S., Meiler, J., Lowe, E.W.: Computational methods in drug discovery. Pharmacol. Rev. 66, 334–395 (2014). Scholar
  2. 2.
    Sadovnichii, V.A., Sulimov, V.B.: Supercomputing technologies in medicine. In: Voevodin, V.V., Sadovnichii, V.A., Savin, G.I. (eds.) Supercomputing Technologies in Science, Education, and Industry, pp. 16–23. Moscow University Publishing (2009). (in Russian)Google Scholar
  3. 3.
    Sulimov, V.B., Sulimov, A.V.: Docking: molecular modeling for drug discovery. AINTELL, Moscow, 348 p. (2017). (in Russian), ISBN 978-5-98956-025-7Google Scholar
  4. 4.
    Chen, Y.C.: Beware of docking! Trends Pharmacol. Sci. 36(2), 78–95 (2015)CrossRefGoogle Scholar
  5. 5.
    Yuriev, E., Holien, J., Ramsland, P.A.: Improvements, trends, and new ideas in molecular docking: 2012–2013 in review. J. Mol. Recognit. 28, 581–604 (2015)CrossRefGoogle Scholar
  6. 6.
    Pagadala, N.S., Syed, K., Tuszynski, J.: Software for molecular docking: a review. Biophys. Rev. 9(2), 91–102 (2017)CrossRefGoogle Scholar
  7. 7.
    Mobley, D.L., Dill, K.A.: Binding of small-molecule ligands to proteins: “what you see” is not always “what you get”. Structure 17(4), 489–498 (2009). Scholar
  8. 8.
    Sulimov, A.V., Kutov, D.C., Katkova, E.V., Kondakova, O.A., Sulimov, V.B.: Search for approaches to improving the calculation accuracy of the protein—ligand binding energy by docking. Russ. Chem. Bull. Int. Ed. 66(10), 1913–1924 (2017)CrossRefGoogle Scholar
  9. 9.
    Forli, S., Huey, R., Pique, M.E., Sanner, M.F., Goodsell, D.S., Olson, A.J.: Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 11(5), 905–919 (2016)CrossRefGoogle Scholar
  10. 10.
    Neves, M.A., Totrov, M., Abagyan, R.: Docking and scoring with ICM: the benchmarking results and strategies for improvement. J. Comput. Aided Mol. Des. 26(6), 675–686 (2012)CrossRefGoogle Scholar
  11. 11.
    Allen, W.J., et al.: DOCK 6: impact of new features and current docking performance. J. Comput. Chem. 36(15), 1132–1156 (2015)CrossRefGoogle Scholar
  12. 12.
    Sulimov, A.V., Kutov, D.C., Oferkin, I.V., Katkova, E.V., Sulimov, V.B.: Application of the docking program SOL for CSAR benchmark. J. Chem. Inf. Model. 53(8), 1946–1956 (2013)CrossRefGoogle Scholar
  13. 13.
    Oferkin, I.V., et al.: Evaluation of docking target functions by the comprehensive investigation of protein-ligand energy minima. Adv. Bioinf. 2015, 12 (2015). Article ID 126858CrossRefGoogle Scholar
  14. 14.
    Oferkin, I.V., Zheltkov, D.A., Tyrtyshnikov, E.E., Sulimov, A.V., Kutov, D.C.: Evaluation of the docking algorithm based on tensor train global optimization. Bull. South Ural State Univ. Ser. Math. Model. Program. Comput. Softw. 8(4), 83–99 (2015).
  15. 15.
    Sulimov, A.V., Kutov, D.C., Katkova, E.V., Sulimov, V.B.: Combined docking with classical force field and quantum chemical semiempirical method PM7. Adv. Bioinf. 2017, 6 (2017). Article ID 7167691CrossRefGoogle Scholar
  16. 16.
    Sulimov, A.V., et al.: Evaluation of the novel algorithm of flexible ligand docking with moveable target protein atoms. Comput. Struct. Biotechnol. J. 15, 275–285 (2017). Scholar
  17. 17.
    Sulimov, A.V., et al.: Tensor train global optimization: application to docking in the configuration space with a large number of dimensions. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2017. CCIS, vol. 793, pp. 151–167. Springer, Cham (2017). Scholar
  18. 18.
    Sulimov, A.V., Kutov, D.C., Katkova, E.V., Sulimov, V.B.: Combined docking with classical force field and quantum chemical semiempirical method PM7. Adv. Bioinform. 2017, 6 p., Article ID 7167691, Accepted 22 Dec 2016
  19. 19.
    Sulimov, A.V., Kutov, D.C., Katkova, E.V., Ilin, I.S., Sulimov, V.B.: New generation of docking programs: Supercomputer validation of force fields and quantum-chemical methods for docking. J. Mol. Graph. Model. 78, 139–147 (2017)CrossRefGoogle Scholar
  20. 20.
    Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995). Scholar
  21. 21.
    Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-BFGS-B: fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. 23(4), 550–560 (1997). Scholar
  22. 22.
    Berman, H.M., Westbrook, J., Feng, Z., et al.: The protein data bank. NucleicAcids Res. 28(1), 235–242 (2000). Scholar
  23. 23.
    Avogadro: an Open-Source Molecular Builder and Visualization Tool. Version1. XX (2017). Accessed 26 Apr 2018.
  24. 24.
    Sadovnichy, V., Tikhonravov, A., Voevodin, V.l., Opanasenko, V.: “Lomonosov”: supercomputing at Moscow State University. In: Contemporary High Performance Computing: From Petascale Toward Exascale, pp. 283–307. CRC Press (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexey Sulimov
    • 1
    • 2
  • Danil Kutov
    • 1
    • 2
  • Vladimir Sulimov
    • 1
    • 2
  1. 1.Dimonta, Ltd.MoscowRussia
  2. 2.Research Computer CenterLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations