Advertisement

An Efficient Parallel Algorithm for Numerical Solution of Low Dimension Dynamics Problems

  • Stepan Orlov
  • Alexey KuzinEmail author
  • Nikolay Shabrov
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 965)

Abstract

Present work is focused on speeding up computer simulations of continuously variable transmission (CVT) dynamics. A simulation is constituted by an initial value problem for ordinary differential equations (ODEs) with highly nonlinear right hand side. Despite low dimension, simulations take considerable CPU time due to internal stiffness of the ODEs, which leads to a large number of integration steps when a conventional numerical method is used. One way to speed up simulations is to parallelize the evaluation of ODE right hand side using the OpenMP technology. The other way is to apply a numerical method more suitable for stiff systems. The paper presents current results obtained by employing a combination of both approaches. Difficulties on the way towards good scalability are pointed out.

Keywords

Continuously variable transmission OpenMP Numerical integration Parallel algorithm 

References

  1. 1.
    Shabrov, N., Ispolov, Y., Orlov, S.: Simulations of continuously variable transmission dynamics. ZAMM 94(11), 917–922 (2014). WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimCrossRefGoogle Scholar
  2. 2.
    Nordling, P., Fritzson, P.: Solving ordinary differential equations on parallel computers — applied to dynamic rolling bearings simulation. In: Dongarra, J., Waśniewski, J. (eds.) PARA 1994. LNCS, vol. 879, pp. 397–415. Springer, Heidelberg (1994).  https://doi.org/10.1007/BFb0030169CrossRefGoogle Scholar
  3. 3.
    Ruprecht, D., Krause, R.: Explicit parallel-in-time integration of a linear acoustic-advection system. Comput. Fluids 59, 72–83 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Liu, J., Jiang, Y.-L.: A parareal waveform relaxation algorithm for semi-linear parabolic partial differential equations. J. Comput. Appl. Math. 236(17), 4245–4263 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Kreienbuehl, A., Benedusi, B., Ruprecht, D., Krause, R.: Time parallel gravitational collapse simulation. Commun. Appl. Math. Comput. Sci. 12(1), 109–128 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer Series in Computational Mathematics, 2nd edn. Springer, New York (1993).  https://doi.org/10.1007/978-3-540-78862-1CrossRefzbMATHGoogle Scholar
  7. 7.
    Orlov, S., Kuzin, A., Shabrov, N.: Two approaches to speeding up dynamics simulation for a low dimension mechanical system. Commun. Comput. Inf. Sci. 793, 95–107 (2017)Google Scholar
  8. 8.
    Rosenbrock, H.H.: Some general implicit processes for the numerical solution of differential equations. Comput. J. 5, 329–330 (1963)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Steihaug, T., Wolfbrandt, A.: An attempt to avoid exact Jacobian and nonlinear equations in the numerical solution of stiff differential equations. Math. Comp. 33, 521–534 (1979)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hart, W.E., Soesianto, F.: On the solution of highly structured nonlinear equations. J. Comput. Appl. Math. 40(3), 285–296 (1992)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ypma, T.J.: Efficient estimation of sparse Jacobian matrices by differences. J. Comput. Appl. Math. 18(1), 17–28 (1987)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer Series in Computational Mathematics. Springer, Heidelberg (1996).  https://doi.org/10.1007/978-3-642-05221-7CrossRefzbMATHGoogle Scholar
  13. 13.
    Medovikov, A.A.: High order explicit methods for parabolic equations. BIT Numer. Math. 38(2), 372–390 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Martín-Vaquero, J., Janssen, B.: Second-order stabilized explicit Runge-Kutta methods for stiff problems. Comput. Phys. Commun. 180(10), 1802–1810 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Torrilhon, M., Jeltsch, R.: Essentially optimal explicit Runge-Kutta methods with application to hyperbolic-parabolic equations. Numerische Mathematik 106(2), 303–334 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Computer Technologies in Engineering DepartmentPeter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussian Federation

Personalised recommendations