Sponges of the Red Sea

Part of the Coral Reefs of the World book series (CORW, volume 11)


Sponges are found in virtually all marine habitats. The Red Sea is no exception, harboring a diverse community of sponge species. However, the state of knowledge of the Red Sea sponge fauna remains in early stages. Various taxonomic efforts have been initiated, starting with early explorers at the beginning of the nineteenth century. Subsequently, published work has focused on modern taxonomic approaches, potential bioactive molecules, microbiological associations of host sponges, and a variety of ecological topics. The majority of studies are restricted to few locations and/or small numbers of species. Overall, this collective knowledge represents a sound foundation but there remains great potential for Red Sea sponges to inform the broader context of sponge work throughout the tropics. This chapter aims to provide an overview of previous work in the region and identify fruitful areas of potential future work.


Porifera Biodiversity Taxonomy Bioactive compounds Ecology Microbes 


  1. Abbas AT, El-Shitany NA, Shaala LA, Ali SS, Azhar EI, Abdel-Dayem UA, Youssef DT (2014) Red Sea Suberea mollis sponge extract protects against CCl4-induced acute liver injury in rats via an antioxidant mechanism. Evid Based Complement Alternat Med 2014:745606CrossRefGoogle Scholar
  2. Abd El Moneam NM, Shreadah MA, El-Assar SA, de Voogd NJ, Nabil-Adam A (2018) Hepatoprotective effect of Red Sea sponge extract against the toxicity of a real-life mixture of persistent organic pollutants. Biotechnol Biotechnol Equip 32:734–743CrossRefGoogle Scholar
  3. Abdelhameed R, Elgawish MS, Mira A, Ibrahim AK, Ahmed SA, Shimizu K, Yamada K (2016) Anti-choline esterase activity of ceramides from the Red Sea marine sponge Mycale euplectellioides. RSC Adv 6:20422–20430CrossRefGoogle Scholar
  4. Abdelhameed RF, Ibrahim AK, Temraz TA, Yamada K, Ahmed SA (2017) Chemical and biological investigation of the red sea sponge Echinoclathria species. J Pharm Sci Res 9:1324Google Scholar
  5. Abdel-Lateff A, Alarif WM, Asfour HZ, Ayyad SEN, Khedr A, Badria FA, Al-lihaibi SS (2014) Cytotoxic effects of three new metabolites from Red Sea marine sponge, Petrosia sp. Environ Toxicol Pharmacol 37:928–935CrossRefGoogle Scholar
  6. Abdelmohsen UR, Pimentel-Elardo SM, Hanora A, Radwan M, Abou-El-Ela SH, Ahmed S, Hentschel U (2010) Isolation, phylogenetic analysis and anti-infective activity screening of marine sponge-associated Actinomycetes. Mar Drugs 8:399–412CrossRefGoogle Scholar
  7. Abdelmohsen UR, Yang C, Horn H, Hajjar D, Ravasi T, Hentschel U (2014a) Actinomycetes from Red Sea sponges: sources for chemical and phylogenetic diversity. Mar Drugs 12:2771–2789CrossRefGoogle Scholar
  8. Abdelmohsen UR, Cheng C, Viegelmann C, Zhang T, Grkovic T, Ahmed S, Quinn RJ, Hentschel U, Edrada-Ebel R (2014b) Dereplication strategies for targeted isolation of new antitrypanosomal actinosporins A and B from a marine sponge associated-Actinokineospora sp. EG49. Mar Drugs 12:1220–1244CrossRefGoogle Scholar
  9. Abdelmohsen UR, Cheng C, Reimer A, Kozjak-Pavlovic V, Ibrahim AK, Rudel T, Hentschel U, Edrada-Ebel R, Ahmed SA (2015) Antichlamydial sterol from the Red Sea sponge Callyspongia aff. implexa. Planta Med 81:382–387CrossRefGoogle Scholar
  10. Abdelwahed NA, Ahmed EF, El-Gammal EW, Hawas UW (2014) Application of statistical design for the optimization of dextranase production by a novel fungus isolated from Red Sea sponge. 3 Biotech 4:533–544CrossRefGoogle Scholar
  11. Abou-Hussein DR, Youssef DT (2016) Mirabolides A and B; new cytotoxic glycerides from the Red Sea sponge Theonella mirabilis. Mar Drugs 14:155CrossRefGoogle Scholar
  12. Abou-Hussein DR, Badr JM, Youssef DT (2014) Dragmacidoside: A new nucleoside from the Red Sea sponge Dragmacidon coccinea. Nat Prod Res 28:1134–1141CrossRefGoogle Scholar
  13. Abou-Shoer MI, Shaala LA, Youssef DT, Badr JM, Habib AAM (2008) Bioactive brominated metabolites from the Red Sea sponge Suberea mollis. J Nat Prod 71:1464–1467CrossRefGoogle Scholar
  14. Abraham I, Jain S, Wu CP, Khanfar MA, Kuang Y, Dai CL, Shi Z, Chen X, Fu L, Ambudkar SV, El Sayed K (2010) Marine sponge-derived sipholane triterpenoids reverse P-glycoprotein (ABCB1)-mediated multidrug resistance in cancer cells. Biochem Pharmacol 80:1497–1506CrossRefGoogle Scholar
  15. Aerts LAM (1998) Sponge/coral interactions in Caribbean reefs: analysis of overgrowth patterns in relation to species identity and cover. Mar Ecol Prog Ser 175:241–249CrossRefGoogle Scholar
  16. Afifi R, Khabour OF (2017) Antibacterial activity of the Saudi Red Sea sponges against Gram-positive pathogens. J King Saud Univ Sci.
  17. Ahmed SA, Khalifa SI, Hamann MT (2008) Antiepileptic ceramides from the Red Sea sponge Negombata corticata. J Nat Prod 71:513–515CrossRefGoogle Scholar
  18. Ahmed A, El-Desoky AH, Al-hammady MA, Elshamy AI, Hegazy MEF, Kato H, Tsukamoto S (2018) New inhibitors of RANKL-induced Osteoclastogenesis from the marine sponge Siphonochalina siphonella. Fitoterapia 128:43–49CrossRefGoogle Scholar
  19. Ahmed HH, Rady HM, Kotob SE (2018) Evidences for the antitumor potentiality of Hemimycale arabica and Negombata magnifica mesohyls in hepatocellular carcinoma rat model. Med Chem Res:1–11Google Scholar
  20. Ajabnoor MAM, Tilmisany AK, Taha AM, Antonius A (1991) Effect of red sea sponge extracts on blood glucose levels in normal mice. J Ethnopharmacol 33:103–106CrossRefGoogle Scholar
  21. Alahdal AM, Asfour HZ, Ahmed SA, Noor AO, Al-Abd AM, Elfaky MA, Elhady SS (2018) Anti-Helicobacter, antitubercular and cytotoxic activities of Scalaranes from the Red Sea sponge Hyrtios erectus. Molecules 23:978CrossRefGoogle Scholar
  22. Alarif WM, Al-Lihaibi SS, Ghandourah MA, Orif MI, Basaif SA, Ayyad SEN (2016) Cytotoxic scalarane-type sesterterpenes from the Saudi Red Sea sponge Hyrtios erectus. J Asian Nat Prod Res 18:611–617CrossRefGoogle Scholar
  23. Al-Massarani SM, El-Gamal AA, Al-Said MS, Al-Lihaibi SS, Basoudan OA (2015) In vitro cytotoxic, antibacterial and antiviral activities of triterpenes from the Red Sea sponge, Siphonochalina siphonella. Trop J Pharm Res 14:33–40CrossRefGoogle Scholar
  24. Al-Massarani SM, El-Gamal AA, Al-Said MS, Abdel-Kader MS, Ashour AE, Kumar A, Abdel-Mageed WM, Al-Rehaily AJ, Ghabbour HA, Fun HK (2016) Studies on the Red Sea sponge Haliclona sp. for its chemical and cytotoxic properties. Pharmacogn Mag 12:114CrossRefGoogle Scholar
  25. Al-Sofyani A, Al-Farawati RK, ElMaradny AA, Niaz GR (2011) Long-chain aliphatic wax esters isolated from the sponge Chalinula saudensis (Demospongia) along the Jeddah coast of the Red Sea. Braz J Oceanogr 59:1–6CrossRefGoogle Scholar
  26. Amina M, Ali MS, Al-Musayeib NM, Al-Lohedan HA (2016) Biophysical characterization of the interaction of bovine serum albumin with anticancer sipholane triterpenoid from the Red Sea sponge. J Mol Liq 220:931–938CrossRefGoogle Scholar
  27. Angawi RF, Saqer E, Abdel-Lateff A, Badria FA, Ayyad SEN (2014) Cytotoxic neviotane triterpene-type from the Red Sea sponge Siphonochalina siphonella. Pharmacogn Mag 10:334CrossRefGoogle Scholar
  28. Ashour MA, Elkhayat ES, Ebel R, Edrada R, Proksch P (2007) Indole alkaloid from the Red Sea sponge Hyrtios erectus. ARKIVOC (15):225–231Google Scholar
  29. Badr JM, Shaala LA, Abou-Shoer MI, Tawfik MK, Habib AAM (2008) Bioactive brominated metabolites from the Red Sea sponge Pseudoceratina arabica. J Nat Prod 71:1472–1474CrossRefGoogle Scholar
  30. Barnathan G, Genin E, Velosaotsy NE, Kornprobst JM, Al-Lihaibi S, Al-Sofyani A, Nongonierma R (2003) Phospholipid fatty acids and sterols of two Cinachyrella sponges from the Saudi Arabian Red Sea: comparison with Cinachyrella species from other origins. Comp Biochem Physiol B Biochem Mol Biol 135:297–308CrossRefGoogle Scholar
  31. Bayer K, Moitinho-Silva L, Brümmer F, Cannistraci CV, Ravasi T, Hentschel U (2014) GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater. FEMS Microbiol Ecol 90:832–843CrossRefGoogle Scholar
  32. Beer S, Ilan M (1998) In situ measurements of photosynthetic irradiance responses of two Red Sea sponges growing under dim light conditions. Mar Biol 131:613–617CrossRefGoogle Scholar
  33. Bell JJ (2008) The functional roles of marine sponges. Estuar Coast Shelf Sci 79:341–353CrossRefGoogle Scholar
  34. Benayahu Y, Loya Y (1981) Competition for space among coral-reef sessile organisms at Eilat, Red Sea. Bull Mar Sci 31:514–522Google Scholar
  35. Bergman O, Haber M, Mayzel B, Anderson MA, Shpigel M, Hill RT, Ilan M (2011) Marine-based cultivation of Diacarnus sponges and the bacterial community composition of wild and maricultured sponges and their larvae. Mar Biotechnol 13:1169–1182CrossRefGoogle Scholar
  36. Berumen ML, Hoey AS, Bass WH, Bouwmeester J, Catania D, Cochran JE, Khalil MT, Miyake S, Mughal MR, Spät JL, Saenz-Agudelo P (2013) The status of coral reef ecology research in the Red Sea. Coral Reefs 32:737–748CrossRefGoogle Scholar
  37. Berumen ML, DiBattista JD, Rocha LA (2017) Introduction to virtual issue on Red Sea and Western Indian Ocean biogeography. J Biogeogr 44:1923–1926CrossRefGoogle Scholar
  38. Blunt JW, Copp BR, Hu WP, Munro MH, Northcote PT, Prinsep MR (2007) Marine natural products. Nat Prod Rep 24:31–86CrossRefGoogle Scholar
  39. Bowen BW, Rocha LA, Toonen RJ, Karl SA (2013) The origins of tropical marine biodiversity. Trends Ecol Evol 28:359–366CrossRefGoogle Scholar
  40. Britstein M, Devescovi G, Handley KM, Malik A, Haber M, Saurav K, Teta R, Costantino V, Burgsdorf I, Gilbert JA, Sher N (2016) A new N-Acyl homoserine lactone synthase in an uncultured symbiont of the Red Sea sponge Theonella swinhoei. Appl Environ Microbiol 82:1274–1285CrossRefGoogle Scholar
  41. Burns E, Ilan M (2003) Comparison of anti-predatory defenses of Red Sea and Caribbean sponges. II. physical defense. Mar Ecol Prog Ser 252:115–123CrossRefGoogle Scholar
  42. Burns E, Ifrach I, Carmeli S, Pawlik JR, Ilan M (2003) Comparison of anti-predatory defenses of Red Sea and Caribbean sponges. I. chemical defense. Mar Ecol Prog Ser 252:105–114CrossRefGoogle Scholar
  43. Burton M (1926) Sponges. Zoological results of the Suez Canal expedition. Trans Zool Soc Lond 22:71–83Google Scholar
  44. Burton M (1952) The ‘Manihine’ expedition to the Gulf of Aqaba 1948–1949 – Sponges. Bull Br Mus Nat Hist Zool 1(8):163–174Google Scholar
  45. Burton M (1959) Sponges. In: Scientific Reports. John Murray Expedition 1933–34. Br Mus Nat Hist Lond 10(5):151–281Google Scholar
  46. Burton M, Rao HS (1932) Report on the shallow-water marine sponges in the collection of the Indian museum. Part I. Rec Indian Mus 34:299–358Google Scholar
  47. Carmely S, Kashman Y (1986) Neviotine-A, a new triterpene from the Red Sea sponge Siphonochalina siphonella. J Org Chem 51:784–788CrossRefGoogle Scholar
  48. Carmely S, Roll M, Loya Y, Kashman Y (1989) The structure of eryloside A, a new antitumor and antifungal 4-methylated steroidal glycoside from the sponge Erylus lendenfeldi. J Nat Prod 52:167–170CrossRefGoogle Scholar
  49. Carmely S, Gebreyesus T, Kashman Y, Skelton BW, White AH, Yosief T (1990) Dysidamide, a novel metabolite from a Red Sea sponge Dysidea herbacea. Aust J Chem 43:1881–1888CrossRefGoogle Scholar
  50. Carter HJ (1879) Contributions to our knowledge of the Spongida. Ann Mag Nat Hist 5:284–304, 343–360, pls XXV-XXVIICrossRefGoogle Scholar
  51. Dayton PK, Kim S, Jarrell SC, Oliver JS, Hammerstrom K, Fisher JL, O’Connor K, Barber JS, Robilliard G, Barry J, Thurber AR, Conlan K (2013) Recruitment, growth and mortality of an Antarctic hexactinellid sponge, Anoxycalyx joubini. PLoS One 8:e56939CrossRefGoogle Scholar
  52. De Goeij JM, Van Oevelen D, Vermeij MJ, Osinga R, Middelburg JJ, de Goeij AF, Admiraal W (2013) Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342:108–110CrossRefGoogle Scholar
  53. Delseth C, Kashman Y, Djerassi C (1979) Ergosta-5, 7, 9 (11), 22-tetraen-3β-ol and its 24ξ-Ethyl homolog, two new marine sterols from the Red Sea sponge Biemna fortis. Helv Chim Acta 62:2037–2045CrossRefGoogle Scholar
  54. DiBattista JD, Roberts MB, Bouwmeester J, Bowen BW, Coker DJ, Lozano-Cortés DF, Howard Choat J, Gaither MR, Hobbs JPA, Khalil MT, Kochzius M (2016) A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea. J Biogeogr 43:423–439CrossRefGoogle Scholar
  55. Dixon GB, Davies SW, Aglyamova GV, Meyer E, Bay LK, Matz MV (2015) Genomic determinants of coral heat tolerance across latitudes. Science 348:1460–1462CrossRefGoogle Scholar
  56. Duffy JE (1992) Host use patterns and demography in a guild of tropical sponge-dwelling shrimps. Mar Ecol Prog Ser 90:127–138CrossRefGoogle Scholar
  57. Dunbar DC, Rimoldi JM, Clark AM, Kelly M, Hamann MT (2000) Anti-cryptococcal and nitric oxide synthase inhibitory imidazole alkaloids from the calcareous sponge Leucetta cf chagosensis. Tetrahedron 56:8795–8798CrossRefGoogle Scholar
  58. Edwards FJ (1987) Climate and oceanography. In: Edwards AJ, Head S (eds) Key environments: Red Sea. Pergamon Press, Oxford, pp 45–68Google Scholar
  59. Ehrlich H, Shaala LA, Youssef DT, Żółtowska-Aksamitowska S, Tsurkan M, Galli R, Meissner H, Wysokowski M, Petrenko I, Tabachnick KR, Ivanenko VN (2018) Discovery of chitin in skeletons of non-verongiid Red Sea demosponges. PLoS One 13:e0195803CrossRefGoogle Scholar
  60. Eid ES, Abo-Elmatty DM, Hanora A, Mesbah NM, Abou-El-Ela SH (2011) Molecular and protein characterization of two species of the latrunculin-producing sponge Negombata from the Red Sea. J Pharm Biomed Anal 56:911–915CrossRefGoogle Scholar
  61. El Bossery AM, Shoukr F, El Komy MM, Rady HM, El-Arab MALE (2017) Sponges from Elphinstone Reef, Northern Red Sea, Egypt. Egypt J Exp Biol Zool 13:79–89Google Scholar
  62. El Sayed KA, Hamann MT, Hashish NE, Shier WT, Kelly M, Khan AA (2001) Antimalarial, antiviral, and antitoxoplasmosis norsesterterpene peroxide acids from the Red Sea sponge Diacarnus erythraeanus. J Nat Prod 64:522–524CrossRefGoogle Scholar
  63. El-Damhougy KA, El-Naggar HA, Ibrahim HA, Bashar MA, Senna FMA (2017) Biological activities of some marine sponge extracts from Aqaba Gulf, Red Sea, Egypt. Int J Fish Aquat Stud 5:652–659Google Scholar
  64. El-Ezz RA, Ibrahim A, Habib E, Kamel H, Afifi M, Hassanean H, Ahmed S (2017) Review of natural products from marine organisms in the Red Sea. Int J Pharm Sci Res 8:940Google Scholar
  65. El-Gamal AA, Al-Massarani SM, Shaala LA, Alahdald AM, Al-Said MS, Ashour AE, Kumar A, Abdel-Kader MS, Abdel-Mageed WM, Youssef DT (2016) Cytotoxic compounds from the Saudi Red Sea sponge Xestospongia testudinaria. Mar Drugs 14:82CrossRefGoogle Scholar
  66. El-Gendy MMAA, Yahya SM, Hamed AR, Soltan MM, El-Bondkly AMA (2017) Phylogenetic analysis and biological evaluation of marine endophytic fungi derived from Red Sea Sponge Hyrtios erectus. Appl Biochem Biotechnol, first online.
  67. Elhady SS, El-Halawany AM, Alahdal AM, Hassanean HA, Ahmed SA (2016a) A new bioactive metabolite isolated from the Red Sea marine sponge Hyrtios erectus. Molecules 21:82CrossRefGoogle Scholar
  68. Elhady SS, Al-Abd AM, El-Halawany AM, Alahdal AM, Hassanean HA, Ahmed SA (2016b) Antiproliferative scalarane-based metabolites from the Red Sea sponge Hyrtios erectus. Mar Drugs 14:130CrossRefGoogle Scholar
  69. Ellis J, Anlauf H, Kürten S, Lozano-Cortés D, Alsaffar Z, Cúrdia J, Jones B, Carvalho S (2017) Cross shelf benthic biodiversity patterns in the southern Red Sea. Sci Rep 7Google Scholar
  70. Elsayed Y, Refaat J, Abdelmohsen UR, Ahmed S, Fouad MA (2017) Rhodozepinone, a new antitrypanosomal azepino-diindole alkaloid from the marine sponge-derived bacterium Rhodococcus sp. UA13. Med Chem Res 26:2751–2760CrossRefGoogle Scholar
  71. Elsayed Y, Refaat J, Abdelmohsen UR, Othman EM, Stopper H, Fouad MA (2018) Metabolomic profiling and biological investigation of the marine sponge-derived bacterium Rhodococcus sp. UA13. Phytochem Anal.
  72. El-Shitany NA, Shaala LA, Abbas AT, Abdel-dayem UA, Azhar EI, Ali SS, van Soest RW, Youssef DT (2015) Evaluation of the anti-inflammatory, antioxidant and immunomodulatory effects of the organic extract of the Red Sea marine sponge Xestospongia testudinaria against carrageenan induced rat paw inflammation. PLoS One 10:e0138917CrossRefGoogle Scholar
  73. Eltamany EE, Radwan MM, Ibrahim AK, ElSohly M, Hassanean HA, Ahmed SA (2014a) Antitumor metabolites from the Red Sea sponge Spheciospongia vagabunda. Planta Med 80:5CrossRefGoogle Scholar
  74. Eltamany EE, Abdelmohsen UR, Ibrahim AK, Hassanean HA, Hentschel U, Ahmed SA (2014b) New antibacterial xanthone from the marine sponge-derived Micrococcus sp. EG45. Bioorg Med Chem Lett 24:4939–4942CrossRefGoogle Scholar
  75. Eltamany EE, Ibrahim AK, Radwan MM, ElSohly MA, Hassanean HA, Ahmed SA (2015) Cytotoxic ceramides from the Red Sea sponge Spheciospongia vagabunda. Med Chem Res 24:3467–3473CrossRefGoogle Scholar
  76. Erpenbeck D, Ekins M, Enghuber N, Hooper JN, Lehnert H, Poliseno A, Schuster A, Setiawan E, de Voogd NJ, Wörheide G, van Soest RW (2016a) Nothing in (sponge) biology makes sense–except when based on holotypes. J Mar Biol Assoc UK 96:305–311CrossRefGoogle Scholar
  77. Erpenbeck D, Voigt O, Al-Aidaroos AM, Berumen ML, Büttner G, Catania D, Guirguis AN, Paulay G, Schätzle S, Wörheide G (2016b) Molecular biodiversity of Red Sea demosponges. Mar Pollut Bull 105:507–514CrossRefGoogle Scholar
  78. Erpenbeck D, Aryasari R, Benning S, Debitus C, Kaltenbacher E, Al-Aidaroos AM, Schupp P, Hall K, Hooper JNA, Voigt O, de Voogd NJ, Wörheide G (2017) Diversity of two widespread Indo-Pacific demosponge species revisited. Mar Biodivers 47:1035–1043Google Scholar
  79. Erwin PM, Thacker RW (2007) Incidence and identity of photosynthetic symbionts in Caribbean coral reef sponge assemblages. J Mar Biol Assoc UK 87:1683–1692CrossRefGoogle Scholar
  80. Faulkner DJ (2000) Marine pharmacology. Antonie Van Leeuwenhoek 77:135–145CrossRefGoogle Scholar
  81. Ferrario F, Calcinai B, Erpenbeck D, Galli P, Wörheide G (2010) Two Pione species (Hadromerida, Clionaidae) from the Red Sea: a taxonomical challenge. Org Divers Evol 10:275–285CrossRefGoogle Scholar
  82. Fishelson L (1966) Spirastrella inconstans Dendy (Porifera) as an ecological niche in the littoral zone of the Dahlak Archipelago (Eritrea). Bull Sea Fish Res Stat Isr 41:17–25Google Scholar
  83. Fishelson L (1971) Ecology and distribution of the benthic fauna in the shallow waters of the Red Sea. Mar Biol 10:113–133CrossRefGoogle Scholar
  84. Fouad M, Al-Trabeen K, Badran M, Wray V, Edrada R, Proksch P, Ebel R (2004) New steroidal saponins from the sponge Erylus lendenfeldi. ARKIVOC 2004(13):17–27CrossRefGoogle Scholar
  85. Foudah AI, Sallam AA, Akl MR, El Sayed KA (2014) Optimization, pharmacophore modeling and 3D-QSAR studies of sipholanes as breast cancer migration and proliferation inhibitors. Eur J Med Chem 73:310–324CrossRefGoogle Scholar
  86. Furby KA, Bouwmeester J, Berumen ML (2013) Susceptibility of central Red Sea corals during a major bleaching event. Coral Reefs 32:505–513CrossRefGoogle Scholar
  87. Gao ZM, Wang Y, Lee OO, Tian RM, Wong YH, Bougouffa S, Batang Z, Al-Suwailem A, Lafi FF, Bajic VB, Qian PY (2014a) Pyrosequencing reveals the microbial communities in the Red Sea sponge Carteriospongia foliascens and their impressive shifts in abnormal tissues. Microb Ecol 68:621–632CrossRefGoogle Scholar
  88. Gao ZM, Wang Y, Tian RM, Wong YH, Batang ZB, Al-Suwailem AM, Bajic VB, Qian PY (2014b) Symbiotic adaptation drives genome streamlining of the cyanobacterial sponge symbiont “Candidatus Synechococcus spongiarum”. MBio 5:e00079–e00014Google Scholar
  89. Gao ZM, Wang Y, Tian RM, Lee OO, Wong YH, Batang ZB, Al-Suwailem A, Lafi FF, Bajic VB, Qian PY (2015) Pyrosequencing revealed shifts of prokaryotic communities between healthy and disease-like tissues of the Red Sea sponge Crella cyathophora. PeerJ 3:e890CrossRefGoogle Scholar
  90. Gebreyesusa T, Yosief T, Carmely S, Kashmanb Y (1988) Dysidamide, a novel hexachloro-metabolite from a Red Sea sponge Dysidea sp. Tetrahedron Lett 29:3863–3864CrossRefGoogle Scholar
  91. Genin A, Monismith SG, Reidenbach MA, Yahel G, Koseff JR (2009) Intense benthic grazing of phytoplankton in a coral reef. Limnol Oceanogr 54:938–951CrossRefGoogle Scholar
  92. Gesner S, Cohen N, Ilan M, Yarden O, Carmeli S (2005) Pandangolide 1a, a metabolite of the sponge-associated fungus Cladosporium sp., and the absolute stereochemistry of pandangolide 1 and iso-cladospolide B. J Nat Prod 68:1350–1353CrossRefGoogle Scholar
  93. Gibson PJ (2011) Ecosystem impacts of carbon and nitrogen cycling by coral reef sponges. PhD thesis, UNC – Chapel Hill, 161Google Scholar
  94. Giles EC, Saenz-Agudelo P, Berumen ML, Ravasi T (2013a) Novel polymorphic microsatellite markers developed for a common reef sponge, Stylissa carteri. Mar Biodivers 43:237–241CrossRefGoogle Scholar
  95. Giles EC, Kamke J, Moitinho-Silva L, Taylor MW, Hentschel U, Ravasi T, Schmitt S (2013b) Bacterial community profiles in low microbial abundance sponges. FEMS Microbiol Ecol 83:232–241Google Scholar
  96. Giles EC, Saenz-Agudelo P, Hussey NE, Ravasi T, Berumen ML (2015) Exploring seascape genetics and kinship in the reef sponge Stylissa carteri in the Red Sea. Ecol Evol 5:2487–2502CrossRefGoogle Scholar
  97. Gillor O, Carmeli S, Rahamim Y, Fishelson Z, Ilan M (2000) Immunolocalization of the toxin latrunculin B within the Red Sea sponge Negombata magnifica (Demospongiae, Latrunculiidae). Mar Biotechnol 2:213–223CrossRefGoogle Scholar
  98. Gloeckner V, Wehrl M, Moitinho-Silva L, Gernert C, Schupp P, Pawlik JR, Lindquist NL, Erpenbeck D, Wörheide G, Hentschel U (2014) The HMA-LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. Biol Bull 227:78–88CrossRefGoogle Scholar
  99. Goobes R, Rudi A, Kashman Y, Ilan M, Loya Y (1996) Three new glycolipids from a Red Sea sponge of the genus Erylus. Tetrahedron 52:7921–7928CrossRefGoogle Scholar
  100. Gugel J, Wagler M, Brümmer F (2011) Porifera, one new species Suberea purpureaflava n. sp. (Demospongiae, Verongida, Aplysinellidae) from northern Red Sea coral reefs, with short descriptions of Red Sea Verongida and known Suberea species. Zootaxa 2994:60–68CrossRefGoogle Scholar
  101. Guo YW, Trivellone E (2000) New hurghamids from a Red Sea sponge of the genus Hippospongia. J Asian Nat Prod Res 2:251–256CrossRefGoogle Scholar
  102. Guo Y, Gavagnin M, Mollo E, Trivellone E, Cimino G, Hamdy NA, Fakhr I, Pansini M (1996) A new norsesterterpene peroxide from a Red Sea sponge. Nat Prod Lett 9:105–112CrossRefGoogle Scholar
  103. Guo Y, Gavagnin M, Mollo E, Cimino G, Hamdy NA, Fakhr I, Pansini M (1997) Hurghamides AD, new N-acyl-2-methylene-β-alanine methyl esters from Red Sea Hippospongia sp. Nat Prod Lett 10:143–150CrossRefGoogle Scholar
  104. Hadas E, Shpigel M, Ilan M (2005) Sea ranching of the marine sponge Negombata magnifica (Demospongiae, Latrunculiidae) as a first step for latrunculin B mass production. Aquaculture 244:159–169CrossRefGoogle Scholar
  105. Hadas E, Marie D, Shpigel M, Ilan M (2006) Virus predation by sponges is a new nutrient-flow pathway in coral reef food webs. Limnol Oceanogr 51:1548–1550CrossRefGoogle Scholar
  106. Hadas E, Ilan M, Shpigel M (2008) Oxygen consumption by a coral reef sponge. J Exp Biol 211:2185–2190CrossRefGoogle Scholar
  107. Hadas E, Shpigel M, Ilan M (2009) Particulate organic matter as a food source for a coral reef sponge. J Exp Biol 212:3643–3650CrossRefGoogle Scholar
  108. Haeckel E (1870) XVIII. Prodromus of a system of the calcareous sponges. J Nat Hist 5:176–191Google Scholar
  109. Haeckel E (1872) Die Kalkschwämme. Eine Monographie in zwei Bänden Text und einem Atlas mit 60 Tafeln Abbildungen. G. Reimer, Berlin. (1:1–484) 2:1-418 (3:pls 1–60)Google Scholar
  110. Hamed AN, Schmitz R, Bergermann A, Totzke F, Kubbutat M, Müller WE, Youssef DT, Bishr MM, Kamel MS, Edrada-Ebel R, Wätjen W (2018) Bioactive pyrrole alkaloids isolated from the Red Sea: marine sponge Stylissa carteri. Zeitschrift für Naturforschung C 73:199–210CrossRefGoogle Scholar
  111. Hassan MH, Rateb ME, Hetta M, Abdelaziz TA, Sleim MA, Jaspars M, Mohammed R (2015) Scalarane sesterterpenes from the Egyptian Red Sea sponge Phyllospongia lamellosa. Tetrahedron 71:577–583CrossRefGoogle Scholar
  112. Hawas UW, Abou El-Kassem LT, Abdelfattah MS, Elmallah MI, Eid MAG, Monier M, Marimuthu N (2018) Cytotoxic activity of alkyl benzoate and fatty acids from the red sea sponge Hyrtios erectus. Nat Prod Res 32:1369–1374CrossRefGoogle Scholar
  113. Helmy T, van Soest RW (2005) Amphimedon species (Porifera: Niphatidae) from the Gulf of Aqaba, Northern Red Sea: filling the gaps in the distribution of a common pantropical genus. Zootaxa 859(1):18CrossRefGoogle Scholar
  114. Helmy T, Mohamed SZ, van Soest RW (2004) Description and classification of dictyoceratid sponges from the Northern Red Sea. Beaufortia 54:81–91Google Scholar
  115. Henkel T, Pawlik JR (2005) Habitat use by sponge-dwelling brittlestars. Mar Biol 146:301–313CrossRefGoogle Scholar
  116. Hoeksema BW, Ten Hove HA, Berumen ML (2016) Christmas tree worms evade smothering by a coral-killing sponge in the Red Sea. Mar Biodivers 46:15–16CrossRefGoogle Scholar
  117. Hooper JN (1997) Revision of Microcionidae (Porifera: Poecilosclerida: Demospongiae), with description of Australian species. Oceanogr Lit Rev 3:247Google Scholar
  118. Hooper JN, van Soest RW (2002) Systema Porifera. A guide to the classification of sponges. In: Systema Porifera. Springer, US, pp 1–7CrossRefGoogle Scholar
  119. Hooper JN, Kelly M, Kennedy A (2000) A new Clathria (Porifera: Demospongiae: Microcionidae) from the Western Indian Ocean. Mem Queensland Mus 45:427–444Google Scholar
  120. Ibrahim HA, El-Naggar HA, El-Damhougy KA, Bashar MA, Senna FMA (2017) Callyspongia crassa and C. siphonella (Porifera, Callyspongiidae) as a potential source for medical bioactive substances, Aqaba Gulf, Red Sea, Egypt. J Basic Appl Zool 78:7CrossRefGoogle Scholar
  121. Ilan M (1995) Reproductive biology, taxonomy, and aspects of chemical ecology of Latrunculiidae (Porifera). Biol Bull 188:306–312CrossRefGoogle Scholar
  122. Ilan M, Abelson A (1995) The life of a sponge in a sandy lagoon. Biol Bull 189:363–369CrossRefGoogle Scholar
  123. Ilan M, Loya Y (1988) Reproduction and settlement of the coral reef sponge Niphates sp. (Red Sea). In: Proc 6th Internat Coral Reef Symp, Townsville Australia, vol 2:745–749Google Scholar
  124. Ilan M, Loya Y (1990) Sexual reproduction and settlement of the coral reef sponge Chalinula sp. from the Red Sea. Mar Biol 105:25–31CrossRefGoogle Scholar
  125. Ilan M, Vacelet J (1993) Kebira uteoides (Porifera, Calcarea) a recent “pharetronid” sponge from coral reefs. Ophelia 38:107–116CrossRefGoogle Scholar
  126. Ilan M, Loya Y, Kolbasov GA, Brickner I (1999) Sponge-inhabiting barnacles on Red Sea coral reefs. Mar Biol 133:709–716CrossRefGoogle Scholar
  127. Ilan M, Gugel J, van Soest R (2004) Taxonomy, reproduction and ecology of new and known Red Sea sponges. Sarsia.: North Atlantic Marine Science 89:388–410CrossRefGoogle Scholar
  128. Imešek M, Pleše B, Pfannkuchen M, Godrijan J, Pfannkuchen DM, Klautau M, Ćetković H (2014) Integrative taxonomy of four Clathrina species of the Adriatic Sea, with the first formal description of Clathrina rubra Sarà, 1958. Org Divers Evol 14:21–29CrossRefGoogle Scholar
  129. Isaacs S, Kashman Y (1992) Shaagrockol B and C; two hexaprenylhydroquinone disulfates from the Red Sea sponge Toxiclona toxius. Tetrahedron Lett 33:2227–2230CrossRefGoogle Scholar
  130. Jain S, Shirode A, Yacoub S, Barbo A, Sylvester PW, Huntimer E, Halaweish F, El Sayed KA (2007a) Biocatalysis of the anticancer sipholane triterpenoids. Planta Med 73:591–596CrossRefGoogle Scholar
  131. Jain S, Laphookhieo S, Shi Z, Fu LW, Akiyama SI, Chen ZS, Youssef DT, van Soest RW, El Sayed KA (2007b) Reversal of P-glycoprotein-mediated multidrug resistance by sipholane triterpenoids. J Nat Prod 70:928–931CrossRefGoogle Scholar
  132. Jain S, Abraham I, Carvalho P, Kuang YH, Shaala LA, Youssef DT, Avery MA, Chen ZS, El Sayed KA (2009) Sipholane triterpenoids: chemistry, reversal of ABCB1/P-glycoprotein-mediated multidrug resistance, and pharmacophore modeling. J Nat Prod 72:1291–1298CrossRefGoogle Scholar
  133. Kalinin VI, Ivanchina NV, Krasokhin VB, Makarieva TN, Stonik VA (2012) Glycosides from marine sponges (Porifera, Demospongiae): structures, taxonomical distribution, biological activities and biological roles. Mar Drugs 10:1671–1710CrossRefGoogle Scholar
  134. Kämpfer P, Glaeser SP, Busse HJ, Abdelmohsen UR, Ahmed S, Hentschel U (2015) Actinokineospora spheciospongiae sp. nov., isolated from the marine sponge Spheciospongia vagabunda. Int J Syst Evol Microbiol 65:879–884CrossRefGoogle Scholar
  135. Kandler N (2015) Biodiversity of Macrofauna Associated with Sponges across Ecological Gradients in the Central Red Sea, Master’s Thesis, King Abdullah University of Science and Technology, Thuwal Saudi Arabia.Google Scholar
  136. Karlińska-Batres K, Wörheide G (2015) Spatial variability of microbial communities of the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Aquat Microb Ecol 74:143–156CrossRefGoogle Scholar
  137. Kashman Y, Rotem M (1979) Muqubilin, a new C24-isoprenoid from a marine sponge. Tetrahedron Lett 20:1707–1708CrossRefGoogle Scholar
  138. Kashman Y, Rudi A (1977) The 13C-NMR spectrum and stereochemistry of heteronemin. Tetrahedron 33:2997–2998CrossRefGoogle Scholar
  139. Kashman Y, Zviely M (1979) New alkylated scalarins from the sponge Dysidea herbacea. Tetrahedron Lett 20:3879–3882CrossRefGoogle Scholar
  140. Kashman Y, Fishelson L, Ne’eman I (1973) N-Acyl-2-methylene-β-alanine methyl esters from the sponge Fasciospongia cavernosa. Tetrahedron 29:3655–3657Google Scholar
  141. Kashman Y, Groweiss A, Shmueli U (1980) Latrunculin, a new 2-thiazolidinone macrolide from the marine sponge Latrunculia magnifica. Tetrahedron Lett 21:3629–3632CrossRefGoogle Scholar
  142. Kashman Y, Groweiss A, Carmely S, Kinamoni Z, Czarkie D, Rotem M (1982) Recent research in marine natural products from the Red Sea. Pure Appl Chem 54:1995–2010CrossRefGoogle Scholar
  143. Kashman Y, Carmely S, Blasberger D, Hirsch S, Green D (1989) Marine natural products: new results from Red Sea invertebrates. Pure Appl Chem 61:517–520CrossRefGoogle Scholar
  144. Kashman Y, Yosief T, Carmeli S (2001) New triterpenoids from the Red Sea sponge Siphonochalina siphonella. J Nat Prod 64:175–180CrossRefGoogle Scholar
  145. Keller C (1883) Die Fauna im Suez-Kanal und die Diffusion der mediterranen und erythräischen Thierwelt: eine thiergeographische Untersuchung, vol 28. Allgemeine schweizerische Gesellschaft für die gesammten Naturwissenschaften, Zürich, pp 1–39Google Scholar
  146. Keller C (1889) Die Spongienfauna des rothen Meeres (I. Hälfte). Z wiss Zool 48:311–405. pls XX-XXVGoogle Scholar
  147. Keller C (1891) Die Spongienfauna des Rothen Meeres (II. Hälfte). Z Wiss Zool 52:294–368. pls XVI-XXGoogle Scholar
  148. Kelly-Borges M, Vacelet J (1995) A revision of Diacamus Burton and Negombata de Laubenfels (Demospongiae: Latrunculiidae) with descriptions of new species from the west central Pacific and the Red Sea. Mem Queensland Mus 38:477–504Google Scholar
  149. Kelman D, Kashman Y, Rosenberg E, Ilan M, Ifrach I, Loya Y (2001) Antimicrobial activity of the reef sponge Amphimedon viridis from the Red Sea: evidence for selective toxicity. Aquat Microb Ecol 24:9–16CrossRefGoogle Scholar
  150. Kelman D, Kashman Y, Hill RT, Rosenberg E, Loya Y (2009) Chemical warfare in the sea: the search for antibiotics from Red Sea corals and sponges. Pure Appl Chem 81:1113–1121CrossRefGoogle Scholar
  151. Keren R, Lavy A, Mayzel B, Ilan M (2015) Culturable associated-bacteria of the sponge Theonella swinhoei show tolerance to high arsenic concentrations. Front Microbiol 6:154CrossRefGoogle Scholar
  152. Keren R, Lavy A, Ilan M (2016) Increasing the richness of culturable arsenic-tolerant bacteria from Theonella swinhoei by addition of sponge skeleton to the growth medium. Microb Ecol 71:873–886CrossRefGoogle Scholar
  153. Keren R, Mayzel B, Lavy A, Polishchuk I, Levy D, Fakra SC, Pokroy B, Ilan M (2017) Sponge-associated bacteria mineralize arsenic and barium on intracellular vesicles. Nat Commun 8:14393CrossRefGoogle Scholar
  154. Khalil MT, Bouwmeester J, Berumen ML (2017) Spatial variation in coral reef fish and benthic communities in the central Saudi Arabian Red Sea. PeerJ 5:e3410CrossRefGoogle Scholar
  155. Klautau M, Valentine C (2003) Revision of the genus Clathrina (Porifera, Calcarea). Zool J Linnean Soc 139:1–62CrossRefGoogle Scholar
  156. Klautau M, Russo CA, Lazoski C, Boury-Esnault N, Thorpe JP, Solé-Cava AM (1999) Does cosmopolitanism result from overconservative systematics? a case study using the marine sponge Chondrilla nucula. Evolution 53:1414–1422CrossRefGoogle Scholar
  157. Klautau M, Imešek M, Azevedo F, Pleše B, Nikolić V, Ćetković H (2016) Adriatic calcarean sponges (Porifera, Calcarea), with the description of six new species and a richness analysis. Eur J Taxon (178):1–52Google Scholar
  158. Kolbasov GA (1990) Acasta-pertusa sp-n (Cirripedia, Thoracica) from the Red Sea. Zool Zhurnal 69:142–145Google Scholar
  159. Lamarck JBPA (1814) Sur les polypiers empâtés. In: Annales du Muséum d’histoire Naturelle, vol 20, Paris, pp 294–312Google Scholar
  160. Lavy A, Keren R, Haber M, Schwartz I, Ilan M (2014) Implementing sponge physiological and genomic information to enhance the diversity of its culturable associated bacteria. FEMS Microbiol Ecol 87:486–502CrossRefGoogle Scholar
  161. Lavy A, Keren R, Yahel G, Ilan M (2016) Intermittent hypoxia and prolonged suboxia measured in situ in a marine sponge. Front Mar Sci 3:263CrossRefGoogle Scholar
  162. Lee OO, Wang Y, Yang J, Lafi FF, Al-Suwailem A, Qian PY (2011) Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME J 5:650CrossRefGoogle Scholar
  163. Lee OO, Lai PY, Wu HX, Zhou XJ, Miao L, Wang H, Qian PY (2012) Marinobacter xestospongiae sp. nov., isolated from the marine sponge Xestospongia testudinaria collected from the Red Sea. Int J Syst Evol Microbiol 62:1980–1985CrossRefGoogle Scholar
  164. Lefranc F, Nuzzo G, Hamdy NA, Fakhr I, Moreno Y, Banuls L, Van Goietsenoven G, Villani G, Mathieu V, van Soest R, Kiss R, Ciavatta ML (2013) In vitro pharmacological and toxicological effects of norterpene peroxides isolated from the Red Sea sponge Diacarnus erythraeanus on normal and cancer cells. J Nat Prod 76:1541–1547CrossRefGoogle Scholar
  165. Lendenfeld R (1889) A monograph of the horny sponges. Royal Society by Trübner and Co, LondonGoogle Scholar
  166. Lévi C (1958) Spongiaires de Mer Rouge, recuellis par la Calypso (1951–1952). Annales de l’Institut océanographique, Monaco 34:3–46Google Scholar
  167. Lévi C (1961) Résultats scientifiques des Campagnes de la ‘Calypso’. Campagne 1954 dans l’Océan Indien (suite). 2. Les spongiaires de l’Ile Aldabra. Annales de l’Institut océanographique 39:1–32Google Scholar
  168. Lévi C (1965) Spongiaires récoltés par l’Expedition israelienne dans le sud de la Mer Rouge en 1962. Sea Fish Res Station Haifa Bull 39:3-27 (Israel South Red Sea Exped. 1962 Rep. 13)Google Scholar
  169. Loh TL, McMurray SE, Henkel TP, Vicente J, Pawlik JR (2015) Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals. PeerJ 3:e901. CrossRefGoogle Scholar
  170. Magnino G, Sarà A, Lancioni T, Gaino E (1999) Endobionts of the coral reef sponge Theonella swinhoei (Porifera, Demospongiae). Invertebr Biol:213–220Google Scholar
  171. Mancini I, Guella G, Pietra F, Amade P (1997) Hanishenols AB, novel linear or methyl-branched glycerol enol ethers of the axinellid sponge Acanthella carteri (= Acanthella aurantiaca) from the Hanish Islands, southern Red Sea. Tetrahedron 53:2625–2628CrossRefGoogle Scholar
  172. Mayzel B, Aizenberg J, Ilan M (2014) The elemental composition of demospongiae from the Red Sea, Gulf of Aqaba. PLoS One 9:e95775CrossRefGoogle Scholar
  173. McClintock JB, Amsler CD, Baker BJ, van Soest RWM (2005) Ecology of Antarctic marine sponges: an overview. Integr Comp Biol 45:359–368CrossRefGoogle Scholar
  174. Mebs D (1985) Chemical defense of a dorid nudibranch, Glossodoris quadricolor, from the Red Sea. J Chem Ecol 11:713–716CrossRefGoogle Scholar
  175. Mehbub MF, Lei J, Franco C, Zhang W (2014) Marine sponge derived natural products between 2001 and 2010: trends and opportunities for discovery of bioactives. Mar Drugs 12:4539–4577CrossRefGoogle Scholar
  176. Meroz E, Ilan M (1995a) Life history characteristics of a coral reef sponge. Mar Biol 124:443–451CrossRefGoogle Scholar
  177. Meroz E, Ilan M (1995b) Cohabitation of a coral reef sponge and a colonial scyphozoan. Mar Biol 124:453–459CrossRefGoogle Scholar
  178. Miloslavich P, Klein E, Díaz JM, Hernández CE, Bigatti G, Campos L, Artigas F, Castillo J, Penchaszadeh PE, Neill PE, Carranza A (2011) Marine biodiversity in the Atlantic and Pacific coasts of South America: knowledge and gaps. PLoS One 6:e14631CrossRefGoogle Scholar
  179. Mohamed GA, Abd-Elrazek AE, Hassanean HA, Alahdal AM, Almohammadi A, Youssef DT (2014a) New fatty acids from the Red Sea sponge Mycale euplectellioides. Nat Prod Res 28:1082–1090CrossRefGoogle Scholar
  180. Mohamed GA, Abd-Elrazek AE, Hassanean HA, Youssef DT, van Soest R (2014b) New compounds from the Red Sea marine sponge Echinoclathria gibbosa. Phytochem Lett 9:51–58CrossRefGoogle Scholar
  181. Moitinho-Silva L, Bayer K, Cannistraci CV, Giles EC, Ryu T, Seridi L, Ravasi T, Hentschel U (2014a) Specificity and transcriptional activity of microbiota associated with low and high microbial abundance sponges from the Red Sea. Mol Ecol 23:1348–1363CrossRefGoogle Scholar
  182. Moitinho-Silva L, Seridi L, Ryu T, Voolstra CR, Ravasi T, Hentschel U (2014b) Revealing microbial functional activities in the Red Sea sponge Stylissa carteri by metatranscriptomics. Environ Microbiol 16:3683–3698CrossRefGoogle Scholar
  183. Mudit M, Khanfar M, Muralidharan A, Thomas S, Shah GV, van Soest RW, El Sayed KA (2009) Discovery, design, and synthesis of anti-metastatic lead phenylmethylene hydantoins inspired by marine natural products. Bioorg Med Chem 17:1731–1738CrossRefGoogle Scholar
  184. Neeman I, Fishelson L, Kashman Y (1975) Isolation of a new toxin from the sponge Latrunculia magnifica in the Gulf of Aquaba (Red Sea). Mar Biol 30:293–296CrossRefGoogle Scholar
  185. Newman DJ, Cragg GM (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 67:1216–1238CrossRefGoogle Scholar
  186. O’Rourke A, Kremb S, Bader TM, Helfer M, Schmitt-Kopplin P, Gerwick WH, Brack-Werner R, Voolstra CR (2016) Alkaloids from the sponge Stylissa carteri present prospective scaffolds for the inhibition of human immunodeficiency Virus 1 (HIV-1). Mar Drugs 14:28CrossRefGoogle Scholar
  187. Oren M, Steindler L, Ilan M (2005) Transmission, plasticity and the molecular identification of cyanobacterial symbionts in the Red Sea sponge Diacarnus erythraenus. Mar Biol 148:35–41CrossRefGoogle Scholar
  188. Ormond RFG, Edwards AJ (1987) Red Sea fishes. In: Red Sea, pp 251–287CrossRefGoogle Scholar
  189. Pan K, Lee OO, Qian PY, Wang WX (2011) Sponges and sediments as monitoring tools of metal contamination in the eastern coast of the Red Sea, Saudi Arabia. Mar Pollut Bull 62:1140–1146CrossRefGoogle Scholar
  190. Pawlik JR (1983) A sponge-eating worm from Bermuda: Branchiosyllis oculata (Polychaeta, Syllidae). PSZNI Mar Ecol 4:65–79CrossRefGoogle Scholar
  191. Pawlik JR, Loh TL (2016) Biogeographical homogeneity of caribbean coral reef benthos. J Biogeogr 44:950–952. CrossRefGoogle Scholar
  192. Pearman JK, Anlauf H, Irigoien X, Carvalho S (2016) Please mind the gap–visual census and cryptic biodiversity assessment at central Red Sea coral reefs. Mar Environ Res 118:20–30CrossRefGoogle Scholar
  193. Perkol-Finkel S, Benayahu Y (2005) Recruitment of benthic organisms onto a planned artificial reef: shifts in community structure one decade post-deployment. Mar Environ Res 59:79–99CrossRefGoogle Scholar
  194. Peters KJ, Amsler CD, McClintock JB, van Soest RWM, Baker BJ (2009) Palatability and chemical defenses of sponges from the western Antarctic Peninsula. Mar Ecol Prog Ser 385:77–85CrossRefGoogle Scholar
  195. Peterson BJ, Chester CM, Jochem FJ, Fourqurean JW (2006) Potential role of sponge communities in controlling phytoplankton blooms in Florida Bay. Mar Ecol Prog Ser 328:93–103CrossRefGoogle Scholar
  196. Pile AJ, Patterson MR, Savarese M, Chernykh VI, Fialkov VA (1997) Trophic effects of sponge feeding within Lake Baikal’s littoral zone. 2. Sponge abundance, diet, feeding efficiency, and carbon flux. Limnol Oceanogr 42:178–184CrossRefGoogle Scholar
  197. Radwan M, Hanora A, Zan J, Mohamed NM, Abo-Elmatty DM, Abou-El-Ela SH, Hill RT (2010) Bacterial community analyses of two Red Sea sponges. Mar Biotechnol 12:350–360CrossRefGoogle Scholar
  198. Ramadan SA (1997) Two new species of mesostigmatid mites (Acari) associated with sponges from the Red Sea, Egypt. Assiut Vet Med J 38:191–204Google Scholar
  199. Reiswig HM (1974) Water transport, respiration and energetics of three tropical marine sponges. J Exp Mar Biol Ecol 14:231–249CrossRefGoogle Scholar
  200. Reitner J, Wörheide G, Thiel V, Gautret P (1996) Reef caves and cryptic habitats of Indo-Pacific reefs—distribution patterns of coralline sponges and microbialites. Global and Regional Controls on Biogenic Sedimentation. I. Reef Evolution: Göttinger Arbeiten zur Geologie und Paläontologie, 2:91–100.Google Scholar
  201. Řezanka T, Dembitsky VM (2003) Ten-membered substituted cyclic 2-oxecanone (Decalactone) derivatives from Latrunculia corticata, a Red Sea sponge. Eur J Org Chem 2003:2144–2152CrossRefGoogle Scholar
  202. Richter C, Wunsch M, Rasheed M, Kotter I, Badran MI (2001) Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413:726CrossRefGoogle Scholar
  203. Rinkevich B, Shashar N, Liberman T (1993) Nontransitive xenogeneic interactions between four common Red Sea sessile invertebrates. In: Proceedings of the Seventh International Coral Reef Symposium, vol 2, pp 833–839Google Scholar
  204. Rix L, Bednarz VN, Cardini U, van Hoytema N, Al-Horani FA, Wild C, Naumann MS (2015) Seasonality in dinitrogen fixation and primary productivity by coral reef framework substrates from the Northern Red Sea. Mar Ecol Prog Ser 533:79–92CrossRefGoogle Scholar
  205. Rix L, De Goeij JM, Mueller CE, Struck U, Middelburg JJ, Van Duyl FC, Al-Horani FA, Wild C, Naumann MS, Van Oevelen D (2016) Coral mucus fuels the sponge loop in warm-and cold-water coral reef ecosystems. Sci Rep 6:18715CrossRefGoogle Scholar
  206. Rix L, Goeij JM, Oevelen D, Struck U, Al-Horani FA, Wild C, Naumann MS (2017) Differential recycling of coral and algal dissolved organic matter via the sponge loop. Funct Ecol 31:778–789CrossRefGoogle Scholar
  207. Rix L, de Goeij JM, van Oevelen D, Struck U, Al-Horani FA, Wild C, Naumann MS (2018) Reef sponges facilitate the transfer of coral-derived organic matter to their associated fauna via the sponge loop. Mar Ecol Prog Ser 589:85–96CrossRefGoogle Scholar
  208. Roberts MB, Jones GP, McCormick MI, Munday PL, Neale S, Thorrold S, Robitzch VS, Berumen ML (2016) Homogeneity of coral reef communities across 8 degrees of latitude in the Saudi Arabian Red Sea. Mar Pollut Bull 105:558–565CrossRefGoogle Scholar
  209. Rotem M, Kashman Y (1979) New polyacetylenes from the sponge Siphonochalina sp. Tetrahedron Lett 20:3193–3196CrossRefGoogle Scholar
  210. Rotem M, Carmely S, Kashman Y, Loya Y (1983) Two new antibiotics from the red sea sponge Psammaplysilla purpurea: total 13C-NMR line assignment of psammaplysins A and B and aerothionin. Tetrahedron 39:667–676CrossRefGoogle Scholar
  211. Row RW (1909) Reports on the marine biology of the Sudanese Red Sea.–XIII. Report on the sponges, collected by Mr. Cyril Crossland in 1904-5.—Part I. Calcarea. Zool J Linnean Soc 31:182–214CrossRefGoogle Scholar
  212. Row RW (1911) Reports on the marine biology of the Sudanese Red Sea.—XIX. Report on the sponges collected by Mr. Cyril Crossland in 1904-5. Part II. Non-Calcarea. Zool J Linnean Soc 31:287–400CrossRefGoogle Scholar
  213. Rudi A, Kashman Y (1993) Aaptosine-a new cytotoxic 5, 8-diazabenz [cd] azulene alkaloid from the Red Sea sponge Aaptos aaptos. Tetrahedron Lett 34:4683–4684CrossRefGoogle Scholar
  214. Rudi A, Yosief T, Schleyer M, Kashman Y (1999) Several new isoprenoids from two marine sponges of the family Axinellidae. Tetrahedron 55:5555–5566CrossRefGoogle Scholar
  215. Rudi A, Yosief T, Loya S, Hizi A, Schleyer M, Kashman Y (2001) Clathsterol, a novel anti-HIV-1 RT sulfated sterol from the sponge Clathria species. J Nat Prod 64:1451–1453CrossRefGoogle Scholar
  216. Rützler K, Rieger G (1973) Sponge burrowing: fine structure of Cliona lampa penetrating calcareous substrata. Mar Biol 21:144–162CrossRefGoogle Scholar
  217. Ryu T, Seridi L, Moitinho-Silva L, Oates M, Liew YJ, Mavromatis C, Wang X, Haywood A, Lafi FF, Kupresanin M, Sougrat R (2016) Hologenome analysis of two marine sponges with different microbiomes. BMC Genomics 17:158CrossRefGoogle Scholar
  218. Sandler JS, Forsburg SL, Faulkner DJ (2005) Bioactive steroidal glycosides from the marine sponge Erylus lendenfeldi. Tetrahedron 61:1199–1206CrossRefGoogle Scholar
  219. Sara M, Pansini M, Pronzato R (1979) Zonation of photophilous sponges related to water movement in reef biotopes of Obhor Creek (Red Sea). Sponge Biology, Colloques Internationaux du Centre National de la Recherche Scientifique 291:271–282Google Scholar
  220. Sauleau P, Bourguet-Kondracki ML (2005) Novel polyhydroxysterols from the Red Sea marine sponge Lamellodysidea herbacea. Steroids 70:954–959CrossRefGoogle Scholar
  221. Sauleau P, Retailleau P, Vacelet J, Bourguet-Kondracki ML (2005) New polychlorinated pyrrolidinones from the Red Sea marine sponge Lamellodysidea herbacea. Tetrahedron 61:955–963CrossRefGoogle Scholar
  222. Sauleau P, Martin MT, Dau METH, Youssef DT, Bourguet-Kondracki ML (2006) Hyrtiazepine, an azepino-indole-type alkaloid from the Red Sea marine sponge Hyrtios erectus⊥. J Nat Prod 69:1676–1679CrossRefGoogle Scholar
  223. Savarese M, Patterson MR, Chernykh VI, Fialkov VA (1997) Trophic effects of sponge feeding within Lake Baikal’s littoral zone. 1. In situ pumping rates. Limnol Oceanogr 42:171–178CrossRefGoogle Scholar
  224. Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N, Perez T, Rodrigo A, Schupp PJ, Vacelet J, Webster N (2012) Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J 6:564CrossRefGoogle Scholar
  225. Schulze FE (1901) Berichte der Commission für oceanographische Forschungen. Zoologische Ergebnisse XVI Hexactinelliden des Rothen Meeres Denkschriften der Kaiserlichen Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche Classe 69:311–324Google Scholar
  226. Shaaban M, Abd-Alla HI, Hassan AZ, Aly HF, Ghani MA (2012) Chemical characterization, antioxidant and inhibitory effects of some marine sponges against carbohydrate metabolizing enzymes. Org Med Chem Lett 2:30CrossRefGoogle Scholar
  227. Shaala LA, Almohammadi A (2017) Biologically active compounds from the red sea sponge Suberea sp. Pak J Pharm Sci:30Google Scholar
  228. Shaala LA, Bamane FH, Badr JM, Youssef DT (2011) Brominated arginine-derived alkaloids from the Red Sea sponge Suberea mollis. J Nat Prod 74:1517–1520CrossRefGoogle Scholar
  229. Shaala LA, Youssef DT, Sulaiman M, Behery FA, Foudah AI, Sayed KAE (2012) Subereamolline A as a potent breast cancer migration, invasion and proliferation inhibitor and bioactive dibrominated alkaloids from the Red Sea sponge Pseudoceratina arabica. Mar Drugs 10:2492–2508CrossRefGoogle Scholar
  230. Shaala LA, Youssef DT, Badr JM, Sulaiman M, Khedr A (2015a) Bioactive secondary metabolites from the Red Sea marine Verongid sponge Suberea species. Mar Drugs 13:1621–1631CrossRefGoogle Scholar
  231. Shaala LA, Youssef DT, Badr JM, Sulaiman M, Khedr A, El Sayed KA (2015b) Bioactive alkaloids from the Red Sea marine Verongid sponge Pseudoceratina arabica. Tetrahedron 71:7837–7841CrossRefGoogle Scholar
  232. Shaala LA, Youssef DT, Ibrahim SR, Mohamed GA (2016) Callyptide A, a new cytotoxic peptide from the Red Sea marine sponge Callyspongia species. Nat Prod Res 30:2783–2790CrossRefGoogle Scholar
  233. Shady NH, Abdelmohsen UR, Safwat A, Fouad M, Kamel MS (2017) Phytochemical and biological investigation of the Red Sea marine sponge Hyrtios sp. J Pharmacogn Phytochem 6:241Google Scholar
  234. Shmueli U, Carmely S, Groweiss A, Kashman Y (1981) Sipholenol and sipholenone, two new triterpenes from the marine sponge siphonochalina siphonella (Lévi). Tetrahedron Lett 22:709–712CrossRefGoogle Scholar
  235. Simister R, Taylor MW, Tsai P, Webster N (2012) Sponge-microbe associations survive high nutrients and temperatures. PLoS One 7:e52220CrossRefGoogle Scholar
  236. Sipkema D, Franssen MC, Osinga R, Tramper J, Wijffels RH (2005) Marine sponges as pharmacy. Mar Biotechnol 7:142CrossRefGoogle Scholar
  237. Sokoloff S, Halevy S, Usieli V, Colorni A, Sarel S (1982) Prianicin A and B, nor-sesterterpenoid peroxide antibiotics from Red Sea sponges. Experientia 38:337–338CrossRefGoogle Scholar
  238. Southwell MW, Weisz JB, Martens CS, Lindquist N (2008a) In situ fluxes of dissolved inorganic nitrogen from the sponge community on Conch Reef, Key Largo, Florida. Limnol Oceanogr 53:986–996CrossRefGoogle Scholar
  239. Southwell MW, Popp BN, Martens CS (2008b) Nitrification controls on fluxes and isotopic composition of nitrate from Florida Keys sponges. Mar Chem 108:96–108CrossRefGoogle Scholar
  240. Spaet JL, Thorrold SR, Berumen ML (2012) A review of elasmobranch research in the Red Sea. J Fish Biol 80:952–965Google Scholar
  241. Spector I, Shochet NR, Kashman Y, Groweiss A (1983) Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells. Science 219:493–495CrossRefGoogle Scholar
  242. Stehli FG, Wells JW (1971) Diversity and age patterns in hermatypic corals. Syst Zool 20:115–126CrossRefGoogle Scholar
  243. Steindler L, Beer S, Peretzman-Shemer A, Nyberg C, Ilan M (2001) Photoadaptation of zooxanthellae in the sponge Cliona vastifica from the Red Sea, as measured in situ. Mar Biol 138:511–515CrossRefGoogle Scholar
  244. Steindler L, Huchon D, Avni A, Ilan M (2005) 16S rRNA phylogeny of sponge-associated cyanobacteria. Appl Environ Microbiol 71:4127–4131CrossRefGoogle Scholar
  245. Suchanek TH, Carpenter RC, Witman JD, Harvell CD (1985) Sponges as important space competitors in deep Caribbean coral reef communities. In: Reaka ML (ed) The ecology of deep and shallow coral reefs, symposia series for undersea research. NOAA/NURP, Rockville, pp 55–59Google Scholar
  246. Tabares P, Degel B, Schaschke N, Hentschel U, Schirmeister T (2012) Identification of the protease inhibitor miraziridine A in the Red sea sponge Theonella swinhoei. Pharm Res 4:63Google Scholar
  247. Talpir R, Rudi A, Ilan M, Kashman Y (1992) Niphatoxin A and B; two new ichthyo-and cytotoxic tripyridine alkaloids from a marine sponge. Tetrahedron Lett 33:3033–3034CrossRefGoogle Scholar
  248. Targett NM, Schmahl GP (1984) Chemical ecology and distribution of sponges in the Salt River Canyon, St. Croix, U.S.V.I. NOAA Technical Memorandum OAR NURP-1, RockvilleGoogle Scholar
  249. Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347CrossRefGoogle Scholar
  250. Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C, Astudillo-García C, Olson JB, Erwin PM, López-Legentil S, Luter H, Chaves-Fonnegra A (2016) Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun 7Google Scholar
  251. Topsent E (1892) Éponges de la Mer Rouge. Mémoires de la Société Zoologique de France 5:21–29. pl. IGoogle Scholar
  252. Topsent E (1906) Éponges recueillies par M. Ch. Gravier dans la Mer Rouge. Bulletin du Muséum National d’Histoire Naturelle 12:557–570Google Scholar
  253. Tsurnamal M (1969) Sponges of Red Sea origin on the Mediterranean coast of Israel. Isr J Zool 18:149–155Google Scholar
  254. Vacelet J, Al Sofyani A, Al Lihaibi S, Kornprobst JM (2001) A new haplosclerid sponge species from the Red Sea. J Mar Biol Assoc U K 81:943–948CrossRefGoogle Scholar
  255. van Soest RWM, Beglinger EJ (2008) Tetractinellid and hadromerid sponges of the Sultanate of Oman. Zoologische Mededelingen 82:749–790Google Scholar
  256. van Soest RW, de Voogd NJ (2018) Calcareous sponges of the Western Indian Ocean and Red Sea. Zootaxa 4426(1):160Google Scholar
  257. van Soest RW, Boury-Esnault N, Vacelet J, Dohrmann M, Erpenbeck D, de Voogd NJ, Santodomingo N, Vanhoorne B, Kelly M, Hooper JN (2012) Global diversity of sponges (Porifera). PLoS One 7:e35105CrossRefGoogle Scholar
  258. van Soest RWM, Boury-Esnault N, Hooper JNA, Rützler K, de Voogd NJ, Alvarez de Glasby B, Hajdu E, Pisera AB, Manconi R, Schoenberg C, Klautau M, Picton B, Kelly M, Vacelet J, Dohrmann M, Díaz MC, Cárdenas P, Carballo JL, Rios Lopez P (2018) World Porifera database. Accessed 6 Dec 2018
  259. Vaughan GO, Burt JA (2016) The changing dynamics of coral reef science in Arabia. Mar Pollut Bull 105:441–458CrossRefGoogle Scholar
  260. Vilozny B, Amagata T, Mooberry SL, Crews P (2004) A new dimension to the biosynthetic products isolated from the sponge Negombata magnifica. J Nat Prod 67:1055–1057CrossRefGoogle Scholar
  261. Voigt O, Erpenbeck D, González-Pech RA, Al-Aidaroos AM, Berumen ML, Wörheide G (2017) Calcinea of the Red Sea: providing a DNA barcode inventory with description of four new species. Mar Biodivers:1–26Google Scholar
  262. Voolstra CR, Miller DJ, Ragan MA, Hoffmann A, Hoegh-Guldberg O, Bourne D, Ball E, Ying H, Foret S, Takahashi S, Weynberg KD (2015) The ReFuGe 2020 consortium—using “omics” approaches to explore the adaptability and resilience of coral holobionts to environmental change. Front Mar Sci 2:68Google Scholar
  263. Westinga E, Hoetjes PC (1981) The intrasponge fauna of Speciospongia vesparia (Porifera, Demospongiae) at Curaçao and Bonaire. Mar Biol 62:139–150CrossRefGoogle Scholar
  264. Wilkinson CR, Fay P (1979) Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature 279:527–529CrossRefGoogle Scholar
  265. Wörheide G (2006) Low variation in partial Cytochrome Oxidase Subunit I (COI) mitochondrial sequences in the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Mar Biol 148:907–912CrossRefGoogle Scholar
  266. Wörheide G, Epp LS, Macis L (2008) Deep genetic divergences among Indo-Pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae): founder effects, vicariance, or both? BMC Evol Biol 8:24CrossRefGoogle Scholar
  267. Wulff JL (1984) Sponge-mediated coral reef growth and rejuvenation. Coral Reefs 3:157–164CrossRefGoogle Scholar
  268. Yahel G, Post AF, Fabricius K, Marie D, Vaulot D, Genin A (1998) Phytoplankton distribution and grazing near coral reefs. Limnol Oceanogr 43:551–563CrossRefGoogle Scholar
  269. Yahel G, Sharp JH, Marie D, Häse C, Genin A (2003) In situ feeding and element removal in the symbiont-bearing sponge Theonella swinhoei: bulk DOC is the major source for carbon. Limnol Oceanogr 48:141–149CrossRefGoogle Scholar
  270. Yahel G, Marie D, Genin A (2005) InEx—a direct in situ method to measure filtration rates, nutrition, and metabolism of active suspension feeders. Limnol Oceanogr Methods 3:46–58CrossRefGoogle Scholar
  271. Yahia R, Hanora A, Fahmy N, Aly KA (2017) Quorum sensing signal production by sponge-associated bacteria isolated from the Red Sea, Egypt. Afr J Biotechnol 16:1688–1698CrossRefGoogle Scholar
  272. Yosief T, Rudi A, Wolde-ab Y, Kashman Y (1998a) Two new C22 1, 2-dioxane polyketides from the marine sponge Acarnus cf. bergquistae. J Nat Prod 61:491–493CrossRefGoogle Scholar
  273. Yosief T, Rudi A, Stein Z, Goldberg I, Gravalos GM, Schleyer M, Kashman Y (1998b) Asmarines AC; three novel cytotoxic metabolites from the marine sponge Raspailia sp. Tetrahedron Lett 39:3323–3326CrossRefGoogle Scholar
  274. Yosief T, Rudi A, Kashman Y (2000) Asmarines A−F, novel cytotoxic compounds from the marine sponge Raspailia species. J Nat Prod 63:299–304CrossRefGoogle Scholar
  275. Youssef DT (2004) Tasnemoxides A−C, new cytotoxic cyclic norsesterterpene peroxides from the Red Sea sponge Diacarnus erythraenus. J Nat Prod 67:112–114CrossRefGoogle Scholar
  276. Youssef DT (2005) Hyrtioerectines A−C, cytotoxic alkaloids from the Red Sea sponge Hyrtios erectus. J Nat Prod 68:1416–1419CrossRefGoogle Scholar
  277. Youssef DT, Mooberry SL (2006) Hurghadolide A and swinholide I, potent actin-microfilament disrupters from the Red Sea sponge Theonella swinhoei. J Nat Prod 69:154–157CrossRefGoogle Scholar
  278. Youssef DT, Yoshida WY, Kelly M, Scheuer PJ (2000) Polyacetylenes from a Red Sea sponge Callyspongia species. J Nat Prod 63:1406–1410CrossRefGoogle Scholar
  279. Youssef DT, Yoshida WY, Kelly M, Scheuer PJ (2001) Cytotoxic cyclic norterpene peroxides from a Red Sea sponge Diacarnus erythraenus. J Nat Prod 64:1332–1335CrossRefGoogle Scholar
  280. Youssef DT, Yamaki RK, Kelly M, Scheuer PJ (2002) Salmahyrtisol A, a novel cytotoxic sesterterpene from the Red Sea sponge Hyrtios erecta. J Nat Prod 65:2–6CrossRefGoogle Scholar
  281. Youssef DT, van Soest RW, Fusetani N (2003a) Callyspongenols A−C, new cytotoxic C22-polyacetylenic alcohols from a Red Sea sponge, Callyspongia species. J Nat Prod 66:679–681CrossRefGoogle Scholar
  282. Youssef DT, van Soest RW, Fusetani N (2003b) Callyspongamide A, a new cytotoxic polyacetylenic amide from the Red Sea sponge Callyspongia fistularis. J Nat Prod 66:861–862CrossRefGoogle Scholar
  283. Youssef DT, Singab ANB, van Soest RW, Fusetani N (2004) Hyrtiosenolides A and B, two new sesquiterpene γ-methoxybutenolides and a new sterol from a Red Sea sponge Hyrtios species. J Nat Prod 67:1736–1739CrossRefGoogle Scholar
  284. Youssef DT, Shaala LA, Emara S (2005) Antimycobacterial scalarane-based sesterterpenes from the Red Sea sponge Hyrtios erecta. J Nat Prod 68:1782–1784CrossRefGoogle Scholar
  285. Youssef DT, Shaala LA, Asfour HZ (2013) Bioactive compounds from the Red Sea marine sponge Hyrtios species. Mar Drugs 11:1061–1070CrossRefGoogle Scholar
  286. Youssef DT, Shaala LA, Mohamed GA, Badr JM, Bamanie FH, Ibrahim SR (2014) Theonellamide G, a potent antifungal and cytotoxic bicyclic glycopeptide from the Red Sea marine sponge Theonella swinhoei. Mar Drugs 12:1911–1923CrossRefGoogle Scholar
  287. Youssef DT, Badr JM, Shaala LA, Mohamed GA, Bamanie FH (2015a) Ehrenasterol and biemnic acid; new bioactive compounds from the Red Sea sponge Biemna ehrenbergi. Phytochem Lett 12:296–301CrossRefGoogle Scholar
  288. Youssef DT, Shaala LA, Alshali KZ (2015b) Bioactive hydantoin alkaloids from the Red Sea marine sponge Hemimycale arabica. Mar Drugs 13:6609–6619CrossRefGoogle Scholar
  289. Żółtowska-Aksamitowska S, Shaala LA, Youssef DT, Elhady SS, Tsurkan MV, Petrenko I, Wysokowski M, Tabachnick K, Meissner H, Ivanenko VN, Bechmann N (2018) First report on chitin in a non-verongiid marine demosponge: the Mycale euplectellioides case. Mar Drugs 16:68CrossRefGoogle Scholar
  290. Zundelevich A, Lazar B, Ilan M (2007) Chemical versus mechanical bioerosion of coral reefs by boring sponges-lessons from Pione cf. vastifica. J Exp Biol 210:91–96CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Red Sea Research Center, Division of Biological and Environmental Science and EngineeringKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
  2. 2.Department of Earth and Environmental Sciences, Palaeontology and GeobiologyLudwig-Maximilians-Universität MünchenMunichGermany
  3. 3.GeoBio-CenterLudwig-Maximilians-Universität MünchenMunichGermany
  4. 4.Bayerische Staatssammlung für Paläontologie und GeologieMunichGermany

Personalised recommendations