Coral Reefs of the Red Sea pp 91-122 | Cite as
Sponges of the Red Sea
- 958 Downloads
Abstract
Sponges are found in virtually all marine habitats. The Red Sea is no exception, harboring a diverse community of sponge species. However, the state of knowledge of the Red Sea sponge fauna remains in early stages. Various taxonomic efforts have been initiated, starting with early explorers at the beginning of the nineteenth century. Subsequently, published work has focused on modern taxonomic approaches, potential bioactive molecules, microbiological associations of host sponges, and a variety of ecological topics. The majority of studies are restricted to few locations and/or small numbers of species. Overall, this collective knowledge represents a sound foundation but there remains great potential for Red Sea sponges to inform the broader context of sponge work throughout the tropics. This chapter aims to provide an overview of previous work in the region and identify fruitful areas of potential future work.
Keywords
Porifera Biodiversity Taxonomy Bioactive compounds Ecology MicrobesReferences
- Abbas AT, El-Shitany NA, Shaala LA, Ali SS, Azhar EI, Abdel-Dayem UA, Youssef DT (2014) Red Sea Suberea mollis sponge extract protects against CCl4-induced acute liver injury in rats via an antioxidant mechanism. Evid Based Complement Alternat Med 2014:745606CrossRefGoogle Scholar
- Abd El Moneam NM, Shreadah MA, El-Assar SA, de Voogd NJ, Nabil-Adam A (2018) Hepatoprotective effect of Red Sea sponge extract against the toxicity of a real-life mixture of persistent organic pollutants. Biotechnol Biotechnol Equip 32:734–743CrossRefGoogle Scholar
- Abdelhameed R, Elgawish MS, Mira A, Ibrahim AK, Ahmed SA, Shimizu K, Yamada K (2016) Anti-choline esterase activity of ceramides from the Red Sea marine sponge Mycale euplectellioides. RSC Adv 6:20422–20430CrossRefGoogle Scholar
- Abdelhameed RF, Ibrahim AK, Temraz TA, Yamada K, Ahmed SA (2017) Chemical and biological investigation of the red sea sponge Echinoclathria species. J Pharm Sci Res 9:1324Google Scholar
- Abdel-Lateff A, Alarif WM, Asfour HZ, Ayyad SEN, Khedr A, Badria FA, Al-lihaibi SS (2014) Cytotoxic effects of three new metabolites from Red Sea marine sponge, Petrosia sp. Environ Toxicol Pharmacol 37:928–935CrossRefGoogle Scholar
- Abdelmohsen UR, Pimentel-Elardo SM, Hanora A, Radwan M, Abou-El-Ela SH, Ahmed S, Hentschel U (2010) Isolation, phylogenetic analysis and anti-infective activity screening of marine sponge-associated Actinomycetes. Mar Drugs 8:399–412CrossRefGoogle Scholar
- Abdelmohsen UR, Yang C, Horn H, Hajjar D, Ravasi T, Hentschel U (2014a) Actinomycetes from Red Sea sponges: sources for chemical and phylogenetic diversity. Mar Drugs 12:2771–2789CrossRefGoogle Scholar
- Abdelmohsen UR, Cheng C, Viegelmann C, Zhang T, Grkovic T, Ahmed S, Quinn RJ, Hentschel U, Edrada-Ebel R (2014b) Dereplication strategies for targeted isolation of new antitrypanosomal actinosporins A and B from a marine sponge associated-Actinokineospora sp. EG49. Mar Drugs 12:1220–1244CrossRefGoogle Scholar
- Abdelmohsen UR, Cheng C, Reimer A, Kozjak-Pavlovic V, Ibrahim AK, Rudel T, Hentschel U, Edrada-Ebel R, Ahmed SA (2015) Antichlamydial sterol from the Red Sea sponge Callyspongia aff. implexa. Planta Med 81:382–387CrossRefGoogle Scholar
- Abdelwahed NA, Ahmed EF, El-Gammal EW, Hawas UW (2014) Application of statistical design for the optimization of dextranase production by a novel fungus isolated from Red Sea sponge. 3 Biotech 4:533–544CrossRefGoogle Scholar
- Abou-Hussein DR, Youssef DT (2016) Mirabolides A and B; new cytotoxic glycerides from the Red Sea sponge Theonella mirabilis. Mar Drugs 14:155CrossRefGoogle Scholar
- Abou-Hussein DR, Badr JM, Youssef DT (2014) Dragmacidoside: A new nucleoside from the Red Sea sponge Dragmacidon coccinea. Nat Prod Res 28:1134–1141CrossRefGoogle Scholar
- Abou-Shoer MI, Shaala LA, Youssef DT, Badr JM, Habib AAM (2008) Bioactive brominated metabolites from the Red Sea sponge Suberea mollis. J Nat Prod 71:1464–1467CrossRefGoogle Scholar
- Abraham I, Jain S, Wu CP, Khanfar MA, Kuang Y, Dai CL, Shi Z, Chen X, Fu L, Ambudkar SV, El Sayed K (2010) Marine sponge-derived sipholane triterpenoids reverse P-glycoprotein (ABCB1)-mediated multidrug resistance in cancer cells. Biochem Pharmacol 80:1497–1506CrossRefGoogle Scholar
- Aerts LAM (1998) Sponge/coral interactions in Caribbean reefs: analysis of overgrowth patterns in relation to species identity and cover. Mar Ecol Prog Ser 175:241–249CrossRefGoogle Scholar
- Afifi R, Khabour OF (2017) Antibacterial activity of the Saudi Red Sea sponges against Gram-positive pathogens. J King Saud Univ Sci. https://doi.org/10.1016/j.jksus.2017.08.009
- Ahmed SA, Khalifa SI, Hamann MT (2008) Antiepileptic ceramides from the Red Sea sponge Negombata corticata. J Nat Prod 71:513–515CrossRefGoogle Scholar
- Ahmed A, El-Desoky AH, Al-hammady MA, Elshamy AI, Hegazy MEF, Kato H, Tsukamoto S (2018) New inhibitors of RANKL-induced Osteoclastogenesis from the marine sponge Siphonochalina siphonella. Fitoterapia 128:43–49CrossRefGoogle Scholar
- Ahmed HH, Rady HM, Kotob SE (2018) Evidences for the antitumor potentiality of Hemimycale arabica and Negombata magnifica mesohyls in hepatocellular carcinoma rat model. Med Chem Res:1–11Google Scholar
- Ajabnoor MAM, Tilmisany AK, Taha AM, Antonius A (1991) Effect of red sea sponge extracts on blood glucose levels in normal mice. J Ethnopharmacol 33:103–106CrossRefGoogle Scholar
- Alahdal AM, Asfour HZ, Ahmed SA, Noor AO, Al-Abd AM, Elfaky MA, Elhady SS (2018) Anti-Helicobacter, antitubercular and cytotoxic activities of Scalaranes from the Red Sea sponge Hyrtios erectus. Molecules 23:978CrossRefGoogle Scholar
- Alarif WM, Al-Lihaibi SS, Ghandourah MA, Orif MI, Basaif SA, Ayyad SEN (2016) Cytotoxic scalarane-type sesterterpenes from the Saudi Red Sea sponge Hyrtios erectus. J Asian Nat Prod Res 18:611–617CrossRefGoogle Scholar
- Al-Massarani SM, El-Gamal AA, Al-Said MS, Al-Lihaibi SS, Basoudan OA (2015) In vitro cytotoxic, antibacterial and antiviral activities of triterpenes from the Red Sea sponge, Siphonochalina siphonella. Trop J Pharm Res 14:33–40CrossRefGoogle Scholar
- Al-Massarani SM, El-Gamal AA, Al-Said MS, Abdel-Kader MS, Ashour AE, Kumar A, Abdel-Mageed WM, Al-Rehaily AJ, Ghabbour HA, Fun HK (2016) Studies on the Red Sea sponge Haliclona sp. for its chemical and cytotoxic properties. Pharmacogn Mag 12:114CrossRefGoogle Scholar
- Al-Sofyani A, Al-Farawati RK, ElMaradny AA, Niaz GR (2011) Long-chain aliphatic wax esters isolated from the sponge Chalinula saudensis (Demospongia) along the Jeddah coast of the Red Sea. Braz J Oceanogr 59:1–6CrossRefGoogle Scholar
- Amina M, Ali MS, Al-Musayeib NM, Al-Lohedan HA (2016) Biophysical characterization of the interaction of bovine serum albumin with anticancer sipholane triterpenoid from the Red Sea sponge. J Mol Liq 220:931–938CrossRefGoogle Scholar
- Angawi RF, Saqer E, Abdel-Lateff A, Badria FA, Ayyad SEN (2014) Cytotoxic neviotane triterpene-type from the Red Sea sponge Siphonochalina siphonella. Pharmacogn Mag 10:334CrossRefGoogle Scholar
- Ashour MA, Elkhayat ES, Ebel R, Edrada R, Proksch P (2007) Indole alkaloid from the Red Sea sponge Hyrtios erectus. ARKIVOC (15):225–231Google Scholar
- Badr JM, Shaala LA, Abou-Shoer MI, Tawfik MK, Habib AAM (2008) Bioactive brominated metabolites from the Red Sea sponge Pseudoceratina arabica. J Nat Prod 71:1472–1474CrossRefGoogle Scholar
- Barnathan G, Genin E, Velosaotsy NE, Kornprobst JM, Al-Lihaibi S, Al-Sofyani A, Nongonierma R (2003) Phospholipid fatty acids and sterols of two Cinachyrella sponges from the Saudi Arabian Red Sea: comparison with Cinachyrella species from other origins. Comp Biochem Physiol B Biochem Mol Biol 135:297–308CrossRefGoogle Scholar
- Bayer K, Moitinho-Silva L, Brümmer F, Cannistraci CV, Ravasi T, Hentschel U (2014) GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater. FEMS Microbiol Ecol 90:832–843CrossRefGoogle Scholar
- Beer S, Ilan M (1998) In situ measurements of photosynthetic irradiance responses of two Red Sea sponges growing under dim light conditions. Mar Biol 131:613–617CrossRefGoogle Scholar
- Bell JJ (2008) The functional roles of marine sponges. Estuar Coast Shelf Sci 79:341–353CrossRefGoogle Scholar
- Benayahu Y, Loya Y (1981) Competition for space among coral-reef sessile organisms at Eilat, Red Sea. Bull Mar Sci 31:514–522Google Scholar
- Bergman O, Haber M, Mayzel B, Anderson MA, Shpigel M, Hill RT, Ilan M (2011) Marine-based cultivation of Diacarnus sponges and the bacterial community composition of wild and maricultured sponges and their larvae. Mar Biotechnol 13:1169–1182CrossRefGoogle Scholar
- Berumen ML, Hoey AS, Bass WH, Bouwmeester J, Catania D, Cochran JE, Khalil MT, Miyake S, Mughal MR, Spät JL, Saenz-Agudelo P (2013) The status of coral reef ecology research in the Red Sea. Coral Reefs 32:737–748CrossRefGoogle Scholar
- Berumen ML, DiBattista JD, Rocha LA (2017) Introduction to virtual issue on Red Sea and Western Indian Ocean biogeography. J Biogeogr 44:1923–1926CrossRefGoogle Scholar
- Blunt JW, Copp BR, Hu WP, Munro MH, Northcote PT, Prinsep MR (2007) Marine natural products. Nat Prod Rep 24:31–86CrossRefGoogle Scholar
- Bowen BW, Rocha LA, Toonen RJ, Karl SA (2013) The origins of tropical marine biodiversity. Trends Ecol Evol 28:359–366CrossRefGoogle Scholar
- Britstein M, Devescovi G, Handley KM, Malik A, Haber M, Saurav K, Teta R, Costantino V, Burgsdorf I, Gilbert JA, Sher N (2016) A new N-Acyl homoserine lactone synthase in an uncultured symbiont of the Red Sea sponge Theonella swinhoei. Appl Environ Microbiol 82:1274–1285CrossRefGoogle Scholar
- Burns E, Ilan M (2003) Comparison of anti-predatory defenses of Red Sea and Caribbean sponges. II. physical defense. Mar Ecol Prog Ser 252:115–123CrossRefGoogle Scholar
- Burns E, Ifrach I, Carmeli S, Pawlik JR, Ilan M (2003) Comparison of anti-predatory defenses of Red Sea and Caribbean sponges. I. chemical defense. Mar Ecol Prog Ser 252:105–114CrossRefGoogle Scholar
- Burton M (1926) Sponges. Zoological results of the Suez Canal expedition. Trans Zool Soc Lond 22:71–83Google Scholar
- Burton M (1952) The ‘Manihine’ expedition to the Gulf of Aqaba 1948–1949 – Sponges. Bull Br Mus Nat Hist Zool 1(8):163–174Google Scholar
- Burton M (1959) Sponges. In: Scientific Reports. John Murray Expedition 1933–34. Br Mus Nat Hist Lond 10(5):151–281Google Scholar
- Burton M, Rao HS (1932) Report on the shallow-water marine sponges in the collection of the Indian museum. Part I. Rec Indian Mus 34:299–358Google Scholar
- Carmely S, Kashman Y (1986) Neviotine-A, a new triterpene from the Red Sea sponge Siphonochalina siphonella. J Org Chem 51:784–788CrossRefGoogle Scholar
- Carmely S, Roll M, Loya Y, Kashman Y (1989) The structure of eryloside A, a new antitumor and antifungal 4-methylated steroidal glycoside from the sponge Erylus lendenfeldi. J Nat Prod 52:167–170CrossRefGoogle Scholar
- Carmely S, Gebreyesus T, Kashman Y, Skelton BW, White AH, Yosief T (1990) Dysidamide, a novel metabolite from a Red Sea sponge Dysidea herbacea. Aust J Chem 43:1881–1888CrossRefGoogle Scholar
- Carter HJ (1879) Contributions to our knowledge of the Spongida. Ann Mag Nat Hist 5:284–304, 343–360, pls XXV-XXVIICrossRefGoogle Scholar
- Dayton PK, Kim S, Jarrell SC, Oliver JS, Hammerstrom K, Fisher JL, O’Connor K, Barber JS, Robilliard G, Barry J, Thurber AR, Conlan K (2013) Recruitment, growth and mortality of an Antarctic hexactinellid sponge, Anoxycalyx joubini. PLoS One 8:e56939CrossRefGoogle Scholar
- De Goeij JM, Van Oevelen D, Vermeij MJ, Osinga R, Middelburg JJ, de Goeij AF, Admiraal W (2013) Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342:108–110CrossRefGoogle Scholar
- Delseth C, Kashman Y, Djerassi C (1979) Ergosta-5, 7, 9 (11), 22-tetraen-3β-ol and its 24ξ-Ethyl homolog, two new marine sterols from the Red Sea sponge Biemna fortis. Helv Chim Acta 62:2037–2045CrossRefGoogle Scholar
- DiBattista JD, Roberts MB, Bouwmeester J, Bowen BW, Coker DJ, Lozano-Cortés DF, Howard Choat J, Gaither MR, Hobbs JPA, Khalil MT, Kochzius M (2016) A review of contemporary patterns of endemism for shallow water reef fauna in the Red Sea. J Biogeogr 43:423–439CrossRefGoogle Scholar
- Dixon GB, Davies SW, Aglyamova GV, Meyer E, Bay LK, Matz MV (2015) Genomic determinants of coral heat tolerance across latitudes. Science 348:1460–1462CrossRefGoogle Scholar
- Duffy JE (1992) Host use patterns and demography in a guild of tropical sponge-dwelling shrimps. Mar Ecol Prog Ser 90:127–138CrossRefGoogle Scholar
- Dunbar DC, Rimoldi JM, Clark AM, Kelly M, Hamann MT (2000) Anti-cryptococcal and nitric oxide synthase inhibitory imidazole alkaloids from the calcareous sponge Leucetta cf chagosensis. Tetrahedron 56:8795–8798CrossRefGoogle Scholar
- Edwards FJ (1987) Climate and oceanography. In: Edwards AJ, Head S (eds) Key environments: Red Sea. Pergamon Press, Oxford, pp 45–68Google Scholar
- Ehrlich H, Shaala LA, Youssef DT, Żółtowska-Aksamitowska S, Tsurkan M, Galli R, Meissner H, Wysokowski M, Petrenko I, Tabachnick KR, Ivanenko VN (2018) Discovery of chitin in skeletons of non-verongiid Red Sea demosponges. PLoS One 13:e0195803CrossRefGoogle Scholar
- Eid ES, Abo-Elmatty DM, Hanora A, Mesbah NM, Abou-El-Ela SH (2011) Molecular and protein characterization of two species of the latrunculin-producing sponge Negombata from the Red Sea. J Pharm Biomed Anal 56:911–915CrossRefGoogle Scholar
- El Bossery AM, Shoukr F, El Komy MM, Rady HM, El-Arab MALE (2017) Sponges from Elphinstone Reef, Northern Red Sea, Egypt. Egypt J Exp Biol Zool 13:79–89Google Scholar
- El Sayed KA, Hamann MT, Hashish NE, Shier WT, Kelly M, Khan AA (2001) Antimalarial, antiviral, and antitoxoplasmosis norsesterterpene peroxide acids from the Red Sea sponge Diacarnus erythraeanus. J Nat Prod 64:522–524CrossRefGoogle Scholar
- El-Damhougy KA, El-Naggar HA, Ibrahim HA, Bashar MA, Senna FMA (2017) Biological activities of some marine sponge extracts from Aqaba Gulf, Red Sea, Egypt. Int J Fish Aquat Stud 5:652–659Google Scholar
- El-Ezz RA, Ibrahim A, Habib E, Kamel H, Afifi M, Hassanean H, Ahmed S (2017) Review of natural products from marine organisms in the Red Sea. Int J Pharm Sci Res 8:940Google Scholar
- El-Gamal AA, Al-Massarani SM, Shaala LA, Alahdald AM, Al-Said MS, Ashour AE, Kumar A, Abdel-Kader MS, Abdel-Mageed WM, Youssef DT (2016) Cytotoxic compounds from the Saudi Red Sea sponge Xestospongia testudinaria. Mar Drugs 14:82CrossRefGoogle Scholar
- El-Gendy MMAA, Yahya SM, Hamed AR, Soltan MM, El-Bondkly AMA (2017) Phylogenetic analysis and biological evaluation of marine endophytic fungi derived from Red Sea Sponge Hyrtios erectus. Appl Biochem Biotechnol, first online. https://doi.org/10.1007/s12010-017-2679-x.
- Elhady SS, El-Halawany AM, Alahdal AM, Hassanean HA, Ahmed SA (2016a) A new bioactive metabolite isolated from the Red Sea marine sponge Hyrtios erectus. Molecules 21:82CrossRefGoogle Scholar
- Elhady SS, Al-Abd AM, El-Halawany AM, Alahdal AM, Hassanean HA, Ahmed SA (2016b) Antiproliferative scalarane-based metabolites from the Red Sea sponge Hyrtios erectus. Mar Drugs 14:130CrossRefGoogle Scholar
- Ellis J, Anlauf H, Kürten S, Lozano-Cortés D, Alsaffar Z, Cúrdia J, Jones B, Carvalho S (2017) Cross shelf benthic biodiversity patterns in the southern Red Sea. Sci Rep 7Google Scholar
- Elsayed Y, Refaat J, Abdelmohsen UR, Ahmed S, Fouad MA (2017) Rhodozepinone, a new antitrypanosomal azepino-diindole alkaloid from the marine sponge-derived bacterium Rhodococcus sp. UA13. Med Chem Res 26:2751–2760CrossRefGoogle Scholar
- Elsayed Y, Refaat J, Abdelmohsen UR, Othman EM, Stopper H, Fouad MA (2018) Metabolomic profiling and biological investigation of the marine sponge-derived bacterium Rhodococcus sp. UA13. Phytochem Anal. https://doi.org/10.1002/pca.2765
- El-Shitany NA, Shaala LA, Abbas AT, Abdel-dayem UA, Azhar EI, Ali SS, van Soest RW, Youssef DT (2015) Evaluation of the anti-inflammatory, antioxidant and immunomodulatory effects of the organic extract of the Red Sea marine sponge Xestospongia testudinaria against carrageenan induced rat paw inflammation. PLoS One 10:e0138917CrossRefGoogle Scholar
- Eltamany EE, Radwan MM, Ibrahim AK, ElSohly M, Hassanean HA, Ahmed SA (2014a) Antitumor metabolites from the Red Sea sponge Spheciospongia vagabunda. Planta Med 80:5CrossRefGoogle Scholar
- Eltamany EE, Abdelmohsen UR, Ibrahim AK, Hassanean HA, Hentschel U, Ahmed SA (2014b) New antibacterial xanthone from the marine sponge-derived Micrococcus sp. EG45. Bioorg Med Chem Lett 24:4939–4942CrossRefGoogle Scholar
- Eltamany EE, Ibrahim AK, Radwan MM, ElSohly MA, Hassanean HA, Ahmed SA (2015) Cytotoxic ceramides from the Red Sea sponge Spheciospongia vagabunda. Med Chem Res 24:3467–3473CrossRefGoogle Scholar
- Erpenbeck D, Ekins M, Enghuber N, Hooper JN, Lehnert H, Poliseno A, Schuster A, Setiawan E, de Voogd NJ, Wörheide G, van Soest RW (2016a) Nothing in (sponge) biology makes sense–except when based on holotypes. J Mar Biol Assoc UK 96:305–311CrossRefGoogle Scholar
- Erpenbeck D, Voigt O, Al-Aidaroos AM, Berumen ML, Büttner G, Catania D, Guirguis AN, Paulay G, Schätzle S, Wörheide G (2016b) Molecular biodiversity of Red Sea demosponges. Mar Pollut Bull 105:507–514CrossRefGoogle Scholar
- Erpenbeck D, Aryasari R, Benning S, Debitus C, Kaltenbacher E, Al-Aidaroos AM, Schupp P, Hall K, Hooper JNA, Voigt O, de Voogd NJ, Wörheide G (2017) Diversity of two widespread Indo-Pacific demosponge species revisited. Mar Biodivers 47:1035–1043Google Scholar
- Erwin PM, Thacker RW (2007) Incidence and identity of photosynthetic symbionts in Caribbean coral reef sponge assemblages. J Mar Biol Assoc UK 87:1683–1692CrossRefGoogle Scholar
- Faulkner DJ (2000) Marine pharmacology. Antonie Van Leeuwenhoek 77:135–145CrossRefGoogle Scholar
- Ferrario F, Calcinai B, Erpenbeck D, Galli P, Wörheide G (2010) Two Pione species (Hadromerida, Clionaidae) from the Red Sea: a taxonomical challenge. Org Divers Evol 10:275–285CrossRefGoogle Scholar
- Fishelson L (1966) Spirastrella inconstans Dendy (Porifera) as an ecological niche in the littoral zone of the Dahlak Archipelago (Eritrea). Bull Sea Fish Res Stat Isr 41:17–25Google Scholar
- Fishelson L (1971) Ecology and distribution of the benthic fauna in the shallow waters of the Red Sea. Mar Biol 10:113–133CrossRefGoogle Scholar
- Fouad M, Al-Trabeen K, Badran M, Wray V, Edrada R, Proksch P, Ebel R (2004) New steroidal saponins from the sponge Erylus lendenfeldi. ARKIVOC 2004(13):17–27CrossRefGoogle Scholar
- Foudah AI, Sallam AA, Akl MR, El Sayed KA (2014) Optimization, pharmacophore modeling and 3D-QSAR studies of sipholanes as breast cancer migration and proliferation inhibitors. Eur J Med Chem 73:310–324CrossRefGoogle Scholar
- Furby KA, Bouwmeester J, Berumen ML (2013) Susceptibility of central Red Sea corals during a major bleaching event. Coral Reefs 32:505–513CrossRefGoogle Scholar
- Gao ZM, Wang Y, Lee OO, Tian RM, Wong YH, Bougouffa S, Batang Z, Al-Suwailem A, Lafi FF, Bajic VB, Qian PY (2014a) Pyrosequencing reveals the microbial communities in the Red Sea sponge Carteriospongia foliascens and their impressive shifts in abnormal tissues. Microb Ecol 68:621–632CrossRefGoogle Scholar
- Gao ZM, Wang Y, Tian RM, Wong YH, Batang ZB, Al-Suwailem AM, Bajic VB, Qian PY (2014b) Symbiotic adaptation drives genome streamlining of the cyanobacterial sponge symbiont “Candidatus Synechococcus spongiarum”. MBio 5:e00079–e00014Google Scholar
- Gao ZM, Wang Y, Tian RM, Lee OO, Wong YH, Batang ZB, Al-Suwailem A, Lafi FF, Bajic VB, Qian PY (2015) Pyrosequencing revealed shifts of prokaryotic communities between healthy and disease-like tissues of the Red Sea sponge Crella cyathophora. PeerJ 3:e890CrossRefGoogle Scholar
- Gebreyesusa T, Yosief T, Carmely S, Kashmanb Y (1988) Dysidamide, a novel hexachloro-metabolite from a Red Sea sponge Dysidea sp. Tetrahedron Lett 29:3863–3864CrossRefGoogle Scholar
- Genin A, Monismith SG, Reidenbach MA, Yahel G, Koseff JR (2009) Intense benthic grazing of phytoplankton in a coral reef. Limnol Oceanogr 54:938–951CrossRefGoogle Scholar
- Gesner S, Cohen N, Ilan M, Yarden O, Carmeli S (2005) Pandangolide 1a, a metabolite of the sponge-associated fungus Cladosporium sp., and the absolute stereochemistry of pandangolide 1 and iso-cladospolide B. J Nat Prod 68:1350–1353CrossRefGoogle Scholar
- Gibson PJ (2011) Ecosystem impacts of carbon and nitrogen cycling by coral reef sponges. PhD thesis, UNC – Chapel Hill, 161Google Scholar
- Giles EC, Saenz-Agudelo P, Berumen ML, Ravasi T (2013a) Novel polymorphic microsatellite markers developed for a common reef sponge, Stylissa carteri. Mar Biodivers 43:237–241CrossRefGoogle Scholar
- Giles EC, Kamke J, Moitinho-Silva L, Taylor MW, Hentschel U, Ravasi T, Schmitt S (2013b) Bacterial community profiles in low microbial abundance sponges. FEMS Microbiol Ecol 83:232–241Google Scholar
- Giles EC, Saenz-Agudelo P, Hussey NE, Ravasi T, Berumen ML (2015) Exploring seascape genetics and kinship in the reef sponge Stylissa carteri in the Red Sea. Ecol Evol 5:2487–2502CrossRefGoogle Scholar
- Gillor O, Carmeli S, Rahamim Y, Fishelson Z, Ilan M (2000) Immunolocalization of the toxin latrunculin B within the Red Sea sponge Negombata magnifica (Demospongiae, Latrunculiidae). Mar Biotechnol 2:213–223CrossRefGoogle Scholar
- Gloeckner V, Wehrl M, Moitinho-Silva L, Gernert C, Schupp P, Pawlik JR, Lindquist NL, Erpenbeck D, Wörheide G, Hentschel U (2014) The HMA-LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. Biol Bull 227:78–88CrossRefGoogle Scholar
- Goobes R, Rudi A, Kashman Y, Ilan M, Loya Y (1996) Three new glycolipids from a Red Sea sponge of the genus Erylus. Tetrahedron 52:7921–7928CrossRefGoogle Scholar
- Gugel J, Wagler M, Brümmer F (2011) Porifera, one new species Suberea purpureaflava n. sp. (Demospongiae, Verongida, Aplysinellidae) from northern Red Sea coral reefs, with short descriptions of Red Sea Verongida and known Suberea species. Zootaxa 2994:60–68CrossRefGoogle Scholar
- Guo YW, Trivellone E (2000) New hurghamids from a Red Sea sponge of the genus Hippospongia. J Asian Nat Prod Res 2:251–256CrossRefGoogle Scholar
- Guo Y, Gavagnin M, Mollo E, Trivellone E, Cimino G, Hamdy NA, Fakhr I, Pansini M (1996) A new norsesterterpene peroxide from a Red Sea sponge. Nat Prod Lett 9:105–112CrossRefGoogle Scholar
- Guo Y, Gavagnin M, Mollo E, Cimino G, Hamdy NA, Fakhr I, Pansini M (1997) Hurghamides AD, new N-acyl-2-methylene-β-alanine methyl esters from Red Sea Hippospongia sp. Nat Prod Lett 10:143–150CrossRefGoogle Scholar
- Hadas E, Shpigel M, Ilan M (2005) Sea ranching of the marine sponge Negombata magnifica (Demospongiae, Latrunculiidae) as a first step for latrunculin B mass production. Aquaculture 244:159–169CrossRefGoogle Scholar
- Hadas E, Marie D, Shpigel M, Ilan M (2006) Virus predation by sponges is a new nutrient-flow pathway in coral reef food webs. Limnol Oceanogr 51:1548–1550CrossRefGoogle Scholar
- Hadas E, Ilan M, Shpigel M (2008) Oxygen consumption by a coral reef sponge. J Exp Biol 211:2185–2190CrossRefGoogle Scholar
- Hadas E, Shpigel M, Ilan M (2009) Particulate organic matter as a food source for a coral reef sponge. J Exp Biol 212:3643–3650CrossRefGoogle Scholar
- Haeckel E (1870) XVIII. Prodromus of a system of the calcareous sponges. J Nat Hist 5:176–191Google Scholar
- Haeckel E (1872) Die Kalkschwämme. Eine Monographie in zwei Bänden Text und einem Atlas mit 60 Tafeln Abbildungen. G. Reimer, Berlin. (1:1–484) 2:1-418 (3:pls 1–60)Google Scholar
- Hamed AN, Schmitz R, Bergermann A, Totzke F, Kubbutat M, Müller WE, Youssef DT, Bishr MM, Kamel MS, Edrada-Ebel R, Wätjen W (2018) Bioactive pyrrole alkaloids isolated from the Red Sea: marine sponge Stylissa carteri. Zeitschrift für Naturforschung C 73:199–210CrossRefGoogle Scholar
- Hassan MH, Rateb ME, Hetta M, Abdelaziz TA, Sleim MA, Jaspars M, Mohammed R (2015) Scalarane sesterterpenes from the Egyptian Red Sea sponge Phyllospongia lamellosa. Tetrahedron 71:577–583CrossRefGoogle Scholar
- Hawas UW, Abou El-Kassem LT, Abdelfattah MS, Elmallah MI, Eid MAG, Monier M, Marimuthu N (2018) Cytotoxic activity of alkyl benzoate and fatty acids from the red sea sponge Hyrtios erectus. Nat Prod Res 32:1369–1374CrossRefGoogle Scholar
- Helmy T, van Soest RW (2005) Amphimedon species (Porifera: Niphatidae) from the Gulf of Aqaba, Northern Red Sea: filling the gaps in the distribution of a common pantropical genus. Zootaxa 859(1):18CrossRefGoogle Scholar
- Helmy T, Mohamed SZ, van Soest RW (2004) Description and classification of dictyoceratid sponges from the Northern Red Sea. Beaufortia 54:81–91Google Scholar
- Henkel T, Pawlik JR (2005) Habitat use by sponge-dwelling brittlestars. Mar Biol 146:301–313CrossRefGoogle Scholar
- Hoeksema BW, Ten Hove HA, Berumen ML (2016) Christmas tree worms evade smothering by a coral-killing sponge in the Red Sea. Mar Biodivers 46:15–16CrossRefGoogle Scholar
- Hooper JN (1997) Revision of Microcionidae (Porifera: Poecilosclerida: Demospongiae), with description of Australian species. Oceanogr Lit Rev 3:247Google Scholar
- Hooper JN, van Soest RW (2002) Systema Porifera. A guide to the classification of sponges. In: Systema Porifera. Springer, US, pp 1–7CrossRefGoogle Scholar
- Hooper JN, Kelly M, Kennedy A (2000) A new Clathria (Porifera: Demospongiae: Microcionidae) from the Western Indian Ocean. Mem Queensland Mus 45:427–444Google Scholar
- Ibrahim HA, El-Naggar HA, El-Damhougy KA, Bashar MA, Senna FMA (2017) Callyspongia crassa and C. siphonella (Porifera, Callyspongiidae) as a potential source for medical bioactive substances, Aqaba Gulf, Red Sea, Egypt. J Basic Appl Zool 78:7CrossRefGoogle Scholar
- Ilan M (1995) Reproductive biology, taxonomy, and aspects of chemical ecology of Latrunculiidae (Porifera). Biol Bull 188:306–312CrossRefGoogle Scholar
- Ilan M, Abelson A (1995) The life of a sponge in a sandy lagoon. Biol Bull 189:363–369CrossRefGoogle Scholar
- Ilan M, Loya Y (1988) Reproduction and settlement of the coral reef sponge Niphates sp. (Red Sea). In: Proc 6th Internat Coral Reef Symp, Townsville Australia, vol 2:745–749Google Scholar
- Ilan M, Loya Y (1990) Sexual reproduction and settlement of the coral reef sponge Chalinula sp. from the Red Sea. Mar Biol 105:25–31CrossRefGoogle Scholar
- Ilan M, Vacelet J (1993) Kebira uteoides (Porifera, Calcarea) a recent “pharetronid” sponge from coral reefs. Ophelia 38:107–116CrossRefGoogle Scholar
- Ilan M, Loya Y, Kolbasov GA, Brickner I (1999) Sponge-inhabiting barnacles on Red Sea coral reefs. Mar Biol 133:709–716CrossRefGoogle Scholar
- Ilan M, Gugel J, van Soest R (2004) Taxonomy, reproduction and ecology of new and known Red Sea sponges. Sarsia.: North Atlantic Marine Science 89:388–410CrossRefGoogle Scholar
- Imešek M, Pleše B, Pfannkuchen M, Godrijan J, Pfannkuchen DM, Klautau M, Ćetković H (2014) Integrative taxonomy of four Clathrina species of the Adriatic Sea, with the first formal description of Clathrina rubra Sarà, 1958. Org Divers Evol 14:21–29CrossRefGoogle Scholar
- Isaacs S, Kashman Y (1992) Shaagrockol B and C; two hexaprenylhydroquinone disulfates from the Red Sea sponge Toxiclona toxius. Tetrahedron Lett 33:2227–2230CrossRefGoogle Scholar
- Jain S, Shirode A, Yacoub S, Barbo A, Sylvester PW, Huntimer E, Halaweish F, El Sayed KA (2007a) Biocatalysis of the anticancer sipholane triterpenoids. Planta Med 73:591–596CrossRefGoogle Scholar
- Jain S, Laphookhieo S, Shi Z, Fu LW, Akiyama SI, Chen ZS, Youssef DT, van Soest RW, El Sayed KA (2007b) Reversal of P-glycoprotein-mediated multidrug resistance by sipholane triterpenoids. J Nat Prod 70:928–931CrossRefGoogle Scholar
- Jain S, Abraham I, Carvalho P, Kuang YH, Shaala LA, Youssef DT, Avery MA, Chen ZS, El Sayed KA (2009) Sipholane triterpenoids: chemistry, reversal of ABCB1/P-glycoprotein-mediated multidrug resistance, and pharmacophore modeling. J Nat Prod 72:1291–1298CrossRefGoogle Scholar
- Kalinin VI, Ivanchina NV, Krasokhin VB, Makarieva TN, Stonik VA (2012) Glycosides from marine sponges (Porifera, Demospongiae): structures, taxonomical distribution, biological activities and biological roles. Mar Drugs 10:1671–1710CrossRefGoogle Scholar
- Kämpfer P, Glaeser SP, Busse HJ, Abdelmohsen UR, Ahmed S, Hentschel U (2015) Actinokineospora spheciospongiae sp. nov., isolated from the marine sponge Spheciospongia vagabunda. Int J Syst Evol Microbiol 65:879–884CrossRefGoogle Scholar
- Kandler N (2015) Biodiversity of Macrofauna Associated with Sponges across Ecological Gradients in the Central Red Sea, Master’s Thesis, King Abdullah University of Science and Technology, Thuwal Saudi Arabia.Google Scholar
- Karlińska-Batres K, Wörheide G (2015) Spatial variability of microbial communities of the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Aquat Microb Ecol 74:143–156CrossRefGoogle Scholar
- Kashman Y, Rotem M (1979) Muqubilin, a new C24-isoprenoid from a marine sponge. Tetrahedron Lett 20:1707–1708CrossRefGoogle Scholar
- Kashman Y, Rudi A (1977) The 13C-NMR spectrum and stereochemistry of heteronemin. Tetrahedron 33:2997–2998CrossRefGoogle Scholar
- Kashman Y, Zviely M (1979) New alkylated scalarins from the sponge Dysidea herbacea. Tetrahedron Lett 20:3879–3882CrossRefGoogle Scholar
- Kashman Y, Fishelson L, Ne’eman I (1973) N-Acyl-2-methylene-β-alanine methyl esters from the sponge Fasciospongia cavernosa. Tetrahedron 29:3655–3657Google Scholar
- Kashman Y, Groweiss A, Shmueli U (1980) Latrunculin, a new 2-thiazolidinone macrolide from the marine sponge Latrunculia magnifica. Tetrahedron Lett 21:3629–3632CrossRefGoogle Scholar
- Kashman Y, Groweiss A, Carmely S, Kinamoni Z, Czarkie D, Rotem M (1982) Recent research in marine natural products from the Red Sea. Pure Appl Chem 54:1995–2010CrossRefGoogle Scholar
- Kashman Y, Carmely S, Blasberger D, Hirsch S, Green D (1989) Marine natural products: new results from Red Sea invertebrates. Pure Appl Chem 61:517–520CrossRefGoogle Scholar
- Kashman Y, Yosief T, Carmeli S (2001) New triterpenoids from the Red Sea sponge Siphonochalina siphonella. J Nat Prod 64:175–180CrossRefGoogle Scholar
- Keller C (1883) Die Fauna im Suez-Kanal und die Diffusion der mediterranen und erythräischen Thierwelt: eine thiergeographische Untersuchung, vol 28. Allgemeine schweizerische Gesellschaft für die gesammten Naturwissenschaften, Zürich, pp 1–39Google Scholar
- Keller C (1889) Die Spongienfauna des rothen Meeres (I. Hälfte). Z wiss Zool 48:311–405. pls XX-XXVGoogle Scholar
- Keller C (1891) Die Spongienfauna des Rothen Meeres (II. Hälfte). Z Wiss Zool 52:294–368. pls XVI-XXGoogle Scholar
- Kelly-Borges M, Vacelet J (1995) A revision of Diacamus Burton and Negombata de Laubenfels (Demospongiae: Latrunculiidae) with descriptions of new species from the west central Pacific and the Red Sea. Mem Queensland Mus 38:477–504Google Scholar
- Kelman D, Kashman Y, Rosenberg E, Ilan M, Ifrach I, Loya Y (2001) Antimicrobial activity of the reef sponge Amphimedon viridis from the Red Sea: evidence for selective toxicity. Aquat Microb Ecol 24:9–16CrossRefGoogle Scholar
- Kelman D, Kashman Y, Hill RT, Rosenberg E, Loya Y (2009) Chemical warfare in the sea: the search for antibiotics from Red Sea corals and sponges. Pure Appl Chem 81:1113–1121CrossRefGoogle Scholar
- Keren R, Lavy A, Mayzel B, Ilan M (2015) Culturable associated-bacteria of the sponge Theonella swinhoei show tolerance to high arsenic concentrations. Front Microbiol 6:154CrossRefGoogle Scholar
- Keren R, Lavy A, Ilan M (2016) Increasing the richness of culturable arsenic-tolerant bacteria from Theonella swinhoei by addition of sponge skeleton to the growth medium. Microb Ecol 71:873–886CrossRefGoogle Scholar
- Keren R, Mayzel B, Lavy A, Polishchuk I, Levy D, Fakra SC, Pokroy B, Ilan M (2017) Sponge-associated bacteria mineralize arsenic and barium on intracellular vesicles. Nat Commun 8:14393CrossRefGoogle Scholar
- Khalil MT, Bouwmeester J, Berumen ML (2017) Spatial variation in coral reef fish and benthic communities in the central Saudi Arabian Red Sea. PeerJ 5:e3410CrossRefGoogle Scholar
- Klautau M, Valentine C (2003) Revision of the genus Clathrina (Porifera, Calcarea). Zool J Linnean Soc 139:1–62CrossRefGoogle Scholar
- Klautau M, Russo CA, Lazoski C, Boury-Esnault N, Thorpe JP, Solé-Cava AM (1999) Does cosmopolitanism result from overconservative systematics? a case study using the marine sponge Chondrilla nucula. Evolution 53:1414–1422CrossRefGoogle Scholar
- Klautau M, Imešek M, Azevedo F, Pleše B, Nikolić V, Ćetković H (2016) Adriatic calcarean sponges (Porifera, Calcarea), with the description of six new species and a richness analysis. Eur J Taxon (178):1–52Google Scholar
- Kolbasov GA (1990) Acasta-pertusa sp-n (Cirripedia, Thoracica) from the Red Sea. Zool Zhurnal 69:142–145Google Scholar
- Lamarck JBPA (1814) Sur les polypiers empâtés. In: Annales du Muséum d’histoire Naturelle, vol 20, Paris, pp 294–312Google Scholar
- Lavy A, Keren R, Haber M, Schwartz I, Ilan M (2014) Implementing sponge physiological and genomic information to enhance the diversity of its culturable associated bacteria. FEMS Microbiol Ecol 87:486–502CrossRefGoogle Scholar
- Lavy A, Keren R, Yahel G, Ilan M (2016) Intermittent hypoxia and prolonged suboxia measured in situ in a marine sponge. Front Mar Sci 3:263CrossRefGoogle Scholar
- Lee OO, Wang Y, Yang J, Lafi FF, Al-Suwailem A, Qian PY (2011) Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME J 5:650CrossRefGoogle Scholar
- Lee OO, Lai PY, Wu HX, Zhou XJ, Miao L, Wang H, Qian PY (2012) Marinobacter xestospongiae sp. nov., isolated from the marine sponge Xestospongia testudinaria collected from the Red Sea. Int J Syst Evol Microbiol 62:1980–1985CrossRefGoogle Scholar
- Lefranc F, Nuzzo G, Hamdy NA, Fakhr I, Moreno Y, Banuls L, Van Goietsenoven G, Villani G, Mathieu V, van Soest R, Kiss R, Ciavatta ML (2013) In vitro pharmacological and toxicological effects of norterpene peroxides isolated from the Red Sea sponge Diacarnus erythraeanus on normal and cancer cells. J Nat Prod 76:1541–1547CrossRefGoogle Scholar
- Lendenfeld R (1889) A monograph of the horny sponges. Royal Society by Trübner and Co, LondonGoogle Scholar
- Lévi C (1958) Spongiaires de Mer Rouge, recuellis par la Calypso (1951–1952). Annales de l’Institut océanographique, Monaco 34:3–46Google Scholar
- Lévi C (1961) Résultats scientifiques des Campagnes de la ‘Calypso’. Campagne 1954 dans l’Océan Indien (suite). 2. Les spongiaires de l’Ile Aldabra. Annales de l’Institut océanographique 39:1–32Google Scholar
- Lévi C (1965) Spongiaires récoltés par l’Expedition israelienne dans le sud de la Mer Rouge en 1962. Sea Fish Res Station Haifa Bull 39:3-27 (Israel South Red Sea Exped. 1962 Rep. 13)Google Scholar
- Loh TL, McMurray SE, Henkel TP, Vicente J, Pawlik JR (2015) Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals. PeerJ 3:e901. https://doi.org/10.7717/peerj.901 CrossRefGoogle Scholar
- Magnino G, Sarà A, Lancioni T, Gaino E (1999) Endobionts of the coral reef sponge Theonella swinhoei (Porifera, Demospongiae). Invertebr Biol:213–220Google Scholar
- Mancini I, Guella G, Pietra F, Amade P (1997) Hanishenols AB, novel linear or methyl-branched glycerol enol ethers of the axinellid sponge Acanthella carteri (= Acanthella aurantiaca) from the Hanish Islands, southern Red Sea. Tetrahedron 53:2625–2628CrossRefGoogle Scholar
- Mayzel B, Aizenberg J, Ilan M (2014) The elemental composition of demospongiae from the Red Sea, Gulf of Aqaba. PLoS One 9:e95775CrossRefGoogle Scholar
- McClintock JB, Amsler CD, Baker BJ, van Soest RWM (2005) Ecology of Antarctic marine sponges: an overview. Integr Comp Biol 45:359–368CrossRefGoogle Scholar
- Mebs D (1985) Chemical defense of a dorid nudibranch, Glossodoris quadricolor, from the Red Sea. J Chem Ecol 11:713–716CrossRefGoogle Scholar
- Mehbub MF, Lei J, Franco C, Zhang W (2014) Marine sponge derived natural products between 2001 and 2010: trends and opportunities for discovery of bioactives. Mar Drugs 12:4539–4577CrossRefGoogle Scholar
- Meroz E, Ilan M (1995a) Life history characteristics of a coral reef sponge. Mar Biol 124:443–451CrossRefGoogle Scholar
- Meroz E, Ilan M (1995b) Cohabitation of a coral reef sponge and a colonial scyphozoan. Mar Biol 124:453–459CrossRefGoogle Scholar
- Miloslavich P, Klein E, Díaz JM, Hernández CE, Bigatti G, Campos L, Artigas F, Castillo J, Penchaszadeh PE, Neill PE, Carranza A (2011) Marine biodiversity in the Atlantic and Pacific coasts of South America: knowledge and gaps. PLoS One 6:e14631CrossRefGoogle Scholar
- Mohamed GA, Abd-Elrazek AE, Hassanean HA, Alahdal AM, Almohammadi A, Youssef DT (2014a) New fatty acids from the Red Sea sponge Mycale euplectellioides. Nat Prod Res 28:1082–1090CrossRefGoogle Scholar
- Mohamed GA, Abd-Elrazek AE, Hassanean HA, Youssef DT, van Soest R (2014b) New compounds from the Red Sea marine sponge Echinoclathria gibbosa. Phytochem Lett 9:51–58CrossRefGoogle Scholar
- Moitinho-Silva L, Bayer K, Cannistraci CV, Giles EC, Ryu T, Seridi L, Ravasi T, Hentschel U (2014a) Specificity and transcriptional activity of microbiota associated with low and high microbial abundance sponges from the Red Sea. Mol Ecol 23:1348–1363CrossRefGoogle Scholar
- Moitinho-Silva L, Seridi L, Ryu T, Voolstra CR, Ravasi T, Hentschel U (2014b) Revealing microbial functional activities in the Red Sea sponge Stylissa carteri by metatranscriptomics. Environ Microbiol 16:3683–3698CrossRefGoogle Scholar
- Mudit M, Khanfar M, Muralidharan A, Thomas S, Shah GV, van Soest RW, El Sayed KA (2009) Discovery, design, and synthesis of anti-metastatic lead phenylmethylene hydantoins inspired by marine natural products. Bioorg Med Chem 17:1731–1738CrossRefGoogle Scholar
- Neeman I, Fishelson L, Kashman Y (1975) Isolation of a new toxin from the sponge Latrunculia magnifica in the Gulf of Aquaba (Red Sea). Mar Biol 30:293–296CrossRefGoogle Scholar
- Newman DJ, Cragg GM (2004) Marine natural products and related compounds in clinical and advanced preclinical trials. J Nat Prod 67:1216–1238CrossRefGoogle Scholar
- O’Rourke A, Kremb S, Bader TM, Helfer M, Schmitt-Kopplin P, Gerwick WH, Brack-Werner R, Voolstra CR (2016) Alkaloids from the sponge Stylissa carteri present prospective scaffolds for the inhibition of human immunodeficiency Virus 1 (HIV-1). Mar Drugs 14:28CrossRefGoogle Scholar
- Oren M, Steindler L, Ilan M (2005) Transmission, plasticity and the molecular identification of cyanobacterial symbionts in the Red Sea sponge Diacarnus erythraenus. Mar Biol 148:35–41CrossRefGoogle Scholar
- Ormond RFG, Edwards AJ (1987) Red Sea fishes. In: Red Sea, pp 251–287CrossRefGoogle Scholar
- Pan K, Lee OO, Qian PY, Wang WX (2011) Sponges and sediments as monitoring tools of metal contamination in the eastern coast of the Red Sea, Saudi Arabia. Mar Pollut Bull 62:1140–1146CrossRefGoogle Scholar
- Pawlik JR (1983) A sponge-eating worm from Bermuda: Branchiosyllis oculata (Polychaeta, Syllidae). PSZNI Mar Ecol 4:65–79CrossRefGoogle Scholar
- Pawlik JR, Loh TL (2016) Biogeographical homogeneity of caribbean coral reef benthos. J Biogeogr 44:950–952. https://doi.org/10.1111/jbi.12858 CrossRefGoogle Scholar
- Pearman JK, Anlauf H, Irigoien X, Carvalho S (2016) Please mind the gap–visual census and cryptic biodiversity assessment at central Red Sea coral reefs. Mar Environ Res 118:20–30CrossRefGoogle Scholar
- Perkol-Finkel S, Benayahu Y (2005) Recruitment of benthic organisms onto a planned artificial reef: shifts in community structure one decade post-deployment. Mar Environ Res 59:79–99CrossRefGoogle Scholar
- Peters KJ, Amsler CD, McClintock JB, van Soest RWM, Baker BJ (2009) Palatability and chemical defenses of sponges from the western Antarctic Peninsula. Mar Ecol Prog Ser 385:77–85CrossRefGoogle Scholar
- Peterson BJ, Chester CM, Jochem FJ, Fourqurean JW (2006) Potential role of sponge communities in controlling phytoplankton blooms in Florida Bay. Mar Ecol Prog Ser 328:93–103CrossRefGoogle Scholar
- Pile AJ, Patterson MR, Savarese M, Chernykh VI, Fialkov VA (1997) Trophic effects of sponge feeding within Lake Baikal’s littoral zone. 2. Sponge abundance, diet, feeding efficiency, and carbon flux. Limnol Oceanogr 42:178–184CrossRefGoogle Scholar
- Radwan M, Hanora A, Zan J, Mohamed NM, Abo-Elmatty DM, Abou-El-Ela SH, Hill RT (2010) Bacterial community analyses of two Red Sea sponges. Mar Biotechnol 12:350–360CrossRefGoogle Scholar
- Ramadan SA (1997) Two new species of mesostigmatid mites (Acari) associated with sponges from the Red Sea, Egypt. Assiut Vet Med J 38:191–204Google Scholar
- Reiswig HM (1974) Water transport, respiration and energetics of three tropical marine sponges. J Exp Mar Biol Ecol 14:231–249CrossRefGoogle Scholar
- Reitner J, Wörheide G, Thiel V, Gautret P (1996) Reef caves and cryptic habitats of Indo-Pacific reefs—distribution patterns of coralline sponges and microbialites. Global and Regional Controls on Biogenic Sedimentation. I. Reef Evolution: Göttinger Arbeiten zur Geologie und Paläontologie, 2:91–100.Google Scholar
- Řezanka T, Dembitsky VM (2003) Ten-membered substituted cyclic 2-oxecanone (Decalactone) derivatives from Latrunculia corticata, a Red Sea sponge. Eur J Org Chem 2003:2144–2152CrossRefGoogle Scholar
- Richter C, Wunsch M, Rasheed M, Kotter I, Badran MI (2001) Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413:726CrossRefGoogle Scholar
- Rinkevich B, Shashar N, Liberman T (1993) Nontransitive xenogeneic interactions between four common Red Sea sessile invertebrates. In: Proceedings of the Seventh International Coral Reef Symposium, vol 2, pp 833–839Google Scholar
- Rix L, Bednarz VN, Cardini U, van Hoytema N, Al-Horani FA, Wild C, Naumann MS (2015) Seasonality in dinitrogen fixation and primary productivity by coral reef framework substrates from the Northern Red Sea. Mar Ecol Prog Ser 533:79–92CrossRefGoogle Scholar
- Rix L, De Goeij JM, Mueller CE, Struck U, Middelburg JJ, Van Duyl FC, Al-Horani FA, Wild C, Naumann MS, Van Oevelen D (2016) Coral mucus fuels the sponge loop in warm-and cold-water coral reef ecosystems. Sci Rep 6:18715CrossRefGoogle Scholar
- Rix L, Goeij JM, Oevelen D, Struck U, Al-Horani FA, Wild C, Naumann MS (2017) Differential recycling of coral and algal dissolved organic matter via the sponge loop. Funct Ecol 31:778–789CrossRefGoogle Scholar
- Rix L, de Goeij JM, van Oevelen D, Struck U, Al-Horani FA, Wild C, Naumann MS (2018) Reef sponges facilitate the transfer of coral-derived organic matter to their associated fauna via the sponge loop. Mar Ecol Prog Ser 589:85–96CrossRefGoogle Scholar
- Roberts MB, Jones GP, McCormick MI, Munday PL, Neale S, Thorrold S, Robitzch VS, Berumen ML (2016) Homogeneity of coral reef communities across 8 degrees of latitude in the Saudi Arabian Red Sea. Mar Pollut Bull 105:558–565CrossRefGoogle Scholar
- Rotem M, Kashman Y (1979) New polyacetylenes from the sponge Siphonochalina sp. Tetrahedron Lett 20:3193–3196CrossRefGoogle Scholar
- Rotem M, Carmely S, Kashman Y, Loya Y (1983) Two new antibiotics from the red sea sponge Psammaplysilla purpurea: total 13C-NMR line assignment of psammaplysins A and B and aerothionin. Tetrahedron 39:667–676CrossRefGoogle Scholar
- Row RW (1909) Reports on the marine biology of the Sudanese Red Sea.–XIII. Report on the sponges, collected by Mr. Cyril Crossland in 1904-5.—Part I. Calcarea. Zool J Linnean Soc 31:182–214CrossRefGoogle Scholar
- Row RW (1911) Reports on the marine biology of the Sudanese Red Sea.—XIX. Report on the sponges collected by Mr. Cyril Crossland in 1904-5. Part II. Non-Calcarea. Zool J Linnean Soc 31:287–400CrossRefGoogle Scholar
- Rudi A, Kashman Y (1993) Aaptosine-a new cytotoxic 5, 8-diazabenz [cd] azulene alkaloid from the Red Sea sponge Aaptos aaptos. Tetrahedron Lett 34:4683–4684CrossRefGoogle Scholar
- Rudi A, Yosief T, Schleyer M, Kashman Y (1999) Several new isoprenoids from two marine sponges of the family Axinellidae. Tetrahedron 55:5555–5566CrossRefGoogle Scholar
- Rudi A, Yosief T, Loya S, Hizi A, Schleyer M, Kashman Y (2001) Clathsterol, a novel anti-HIV-1 RT sulfated sterol from the sponge Clathria species. J Nat Prod 64:1451–1453CrossRefGoogle Scholar
- Rützler K, Rieger G (1973) Sponge burrowing: fine structure of Cliona lampa penetrating calcareous substrata. Mar Biol 21:144–162CrossRefGoogle Scholar
- Ryu T, Seridi L, Moitinho-Silva L, Oates M, Liew YJ, Mavromatis C, Wang X, Haywood A, Lafi FF, Kupresanin M, Sougrat R (2016) Hologenome analysis of two marine sponges with different microbiomes. BMC Genomics 17:158CrossRefGoogle Scholar
- Sandler JS, Forsburg SL, Faulkner DJ (2005) Bioactive steroidal glycosides from the marine sponge Erylus lendenfeldi. Tetrahedron 61:1199–1206CrossRefGoogle Scholar
- Sara M, Pansini M, Pronzato R (1979) Zonation of photophilous sponges related to water movement in reef biotopes of Obhor Creek (Red Sea). Sponge Biology, Colloques Internationaux du Centre National de la Recherche Scientifique 291:271–282Google Scholar
- Sauleau P, Bourguet-Kondracki ML (2005) Novel polyhydroxysterols from the Red Sea marine sponge Lamellodysidea herbacea. Steroids 70:954–959CrossRefGoogle Scholar
- Sauleau P, Retailleau P, Vacelet J, Bourguet-Kondracki ML (2005) New polychlorinated pyrrolidinones from the Red Sea marine sponge Lamellodysidea herbacea. Tetrahedron 61:955–963CrossRefGoogle Scholar
- Sauleau P, Martin MT, Dau METH, Youssef DT, Bourguet-Kondracki ML (2006) Hyrtiazepine, an azepino-indole-type alkaloid from the Red Sea marine sponge Hyrtios erectus⊥. J Nat Prod 69:1676–1679CrossRefGoogle Scholar
- Savarese M, Patterson MR, Chernykh VI, Fialkov VA (1997) Trophic effects of sponge feeding within Lake Baikal’s littoral zone. 1. In situ pumping rates. Limnol Oceanogr 42:171–178CrossRefGoogle Scholar
- Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N, Perez T, Rodrigo A, Schupp PJ, Vacelet J, Webster N (2012) Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J 6:564CrossRefGoogle Scholar
- Schulze FE (1901) Berichte der Commission für oceanographische Forschungen. Zoologische Ergebnisse XVI Hexactinelliden des Rothen Meeres Denkschriften der Kaiserlichen Akademie der Wissenschaften Mathematisch-Naturwissenschaftliche Classe 69:311–324Google Scholar
- Shaaban M, Abd-Alla HI, Hassan AZ, Aly HF, Ghani MA (2012) Chemical characterization, antioxidant and inhibitory effects of some marine sponges against carbohydrate metabolizing enzymes. Org Med Chem Lett 2:30CrossRefGoogle Scholar
- Shaala LA, Almohammadi A (2017) Biologically active compounds from the red sea sponge Suberea sp. Pak J Pharm Sci:30Google Scholar
- Shaala LA, Bamane FH, Badr JM, Youssef DT (2011) Brominated arginine-derived alkaloids from the Red Sea sponge Suberea mollis. J Nat Prod 74:1517–1520CrossRefGoogle Scholar
- Shaala LA, Youssef DT, Sulaiman M, Behery FA, Foudah AI, Sayed KAE (2012) Subereamolline A as a potent breast cancer migration, invasion and proliferation inhibitor and bioactive dibrominated alkaloids from the Red Sea sponge Pseudoceratina arabica. Mar Drugs 10:2492–2508CrossRefGoogle Scholar
- Shaala LA, Youssef DT, Badr JM, Sulaiman M, Khedr A (2015a) Bioactive secondary metabolites from the Red Sea marine Verongid sponge Suberea species. Mar Drugs 13:1621–1631CrossRefGoogle Scholar
- Shaala LA, Youssef DT, Badr JM, Sulaiman M, Khedr A, El Sayed KA (2015b) Bioactive alkaloids from the Red Sea marine Verongid sponge Pseudoceratina arabica. Tetrahedron 71:7837–7841CrossRefGoogle Scholar
- Shaala LA, Youssef DT, Ibrahim SR, Mohamed GA (2016) Callyptide A, a new cytotoxic peptide from the Red Sea marine sponge Callyspongia species. Nat Prod Res 30:2783–2790CrossRefGoogle Scholar
- Shady NH, Abdelmohsen UR, Safwat A, Fouad M, Kamel MS (2017) Phytochemical and biological investigation of the Red Sea marine sponge Hyrtios sp. J Pharmacogn Phytochem 6:241Google Scholar
- Shmueli U, Carmely S, Groweiss A, Kashman Y (1981) Sipholenol and sipholenone, two new triterpenes from the marine sponge siphonochalina siphonella (Lévi). Tetrahedron Lett 22:709–712CrossRefGoogle Scholar
- Simister R, Taylor MW, Tsai P, Webster N (2012) Sponge-microbe associations survive high nutrients and temperatures. PLoS One 7:e52220CrossRefGoogle Scholar
- Sipkema D, Franssen MC, Osinga R, Tramper J, Wijffels RH (2005) Marine sponges as pharmacy. Mar Biotechnol 7:142CrossRefGoogle Scholar
- Sokoloff S, Halevy S, Usieli V, Colorni A, Sarel S (1982) Prianicin A and B, nor-sesterterpenoid peroxide antibiotics from Red Sea sponges. Experientia 38:337–338CrossRefGoogle Scholar
- Southwell MW, Weisz JB, Martens CS, Lindquist N (2008a) In situ fluxes of dissolved inorganic nitrogen from the sponge community on Conch Reef, Key Largo, Florida. Limnol Oceanogr 53:986–996CrossRefGoogle Scholar
- Southwell MW, Popp BN, Martens CS (2008b) Nitrification controls on fluxes and isotopic composition of nitrate from Florida Keys sponges. Mar Chem 108:96–108CrossRefGoogle Scholar
- Spaet JL, Thorrold SR, Berumen ML (2012) A review of elasmobranch research in the Red Sea. J Fish Biol 80:952–965Google Scholar
- Spector I, Shochet NR, Kashman Y, Groweiss A (1983) Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells. Science 219:493–495CrossRefGoogle Scholar
- Stehli FG, Wells JW (1971) Diversity and age patterns in hermatypic corals. Syst Zool 20:115–126CrossRefGoogle Scholar
- Steindler L, Beer S, Peretzman-Shemer A, Nyberg C, Ilan M (2001) Photoadaptation of zooxanthellae in the sponge Cliona vastifica from the Red Sea, as measured in situ. Mar Biol 138:511–515CrossRefGoogle Scholar
- Steindler L, Huchon D, Avni A, Ilan M (2005) 16S rRNA phylogeny of sponge-associated cyanobacteria. Appl Environ Microbiol 71:4127–4131CrossRefGoogle Scholar
- Suchanek TH, Carpenter RC, Witman JD, Harvell CD (1985) Sponges as important space competitors in deep Caribbean coral reef communities. In: Reaka ML (ed) The ecology of deep and shallow coral reefs, symposia series for undersea research. NOAA/NURP, Rockville, pp 55–59Google Scholar
- Tabares P, Degel B, Schaschke N, Hentschel U, Schirmeister T (2012) Identification of the protease inhibitor miraziridine A in the Red sea sponge Theonella swinhoei. Pharm Res 4:63Google Scholar
- Talpir R, Rudi A, Ilan M, Kashman Y (1992) Niphatoxin A and B; two new ichthyo-and cytotoxic tripyridine alkaloids from a marine sponge. Tetrahedron Lett 33:3033–3034CrossRefGoogle Scholar
- Targett NM, Schmahl GP (1984) Chemical ecology and distribution of sponges in the Salt River Canyon, St. Croix, U.S.V.I. NOAA Technical Memorandum OAR NURP-1, RockvilleGoogle Scholar
- Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347CrossRefGoogle Scholar
- Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C, Astudillo-García C, Olson JB, Erwin PM, López-Legentil S, Luter H, Chaves-Fonnegra A (2016) Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun 7Google Scholar
- Topsent E (1892) Éponges de la Mer Rouge. Mémoires de la Société Zoologique de France 5:21–29. pl. IGoogle Scholar
- Topsent E (1906) Éponges recueillies par M. Ch. Gravier dans la Mer Rouge. Bulletin du Muséum National d’Histoire Naturelle 12:557–570Google Scholar
- Tsurnamal M (1969) Sponges of Red Sea origin on the Mediterranean coast of Israel. Isr J Zool 18:149–155Google Scholar
- Vacelet J, Al Sofyani A, Al Lihaibi S, Kornprobst JM (2001) A new haplosclerid sponge species from the Red Sea. J Mar Biol Assoc U K 81:943–948CrossRefGoogle Scholar
- van Soest RWM, Beglinger EJ (2008) Tetractinellid and hadromerid sponges of the Sultanate of Oman. Zoologische Mededelingen 82:749–790Google Scholar
- van Soest RW, de Voogd NJ (2018) Calcareous sponges of the Western Indian Ocean and Red Sea. Zootaxa 4426(1):160Google Scholar
- van Soest RW, Boury-Esnault N, Vacelet J, Dohrmann M, Erpenbeck D, de Voogd NJ, Santodomingo N, Vanhoorne B, Kelly M, Hooper JN (2012) Global diversity of sponges (Porifera). PLoS One 7:e35105CrossRefGoogle Scholar
- van Soest RWM, Boury-Esnault N, Hooper JNA, Rützler K, de Voogd NJ, Alvarez de Glasby B, Hajdu E, Pisera AB, Manconi R, Schoenberg C, Klautau M, Picton B, Kelly M, Vacelet J, Dohrmann M, Díaz MC, Cárdenas P, Carballo JL, Rios Lopez P (2018) World Porifera database. Accessed 6 Dec 2018 http://www.marinespecies.org/porifera.
- Vaughan GO, Burt JA (2016) The changing dynamics of coral reef science in Arabia. Mar Pollut Bull 105:441–458CrossRefGoogle Scholar
- Vilozny B, Amagata T, Mooberry SL, Crews P (2004) A new dimension to the biosynthetic products isolated from the sponge Negombata magnifica. J Nat Prod 67:1055–1057CrossRefGoogle Scholar
- Voigt O, Erpenbeck D, González-Pech RA, Al-Aidaroos AM, Berumen ML, Wörheide G (2017) Calcinea of the Red Sea: providing a DNA barcode inventory with description of four new species. Mar Biodivers:1–26Google Scholar
- Voolstra CR, Miller DJ, Ragan MA, Hoffmann A, Hoegh-Guldberg O, Bourne D, Ball E, Ying H, Foret S, Takahashi S, Weynberg KD (2015) The ReFuGe 2020 consortium—using “omics” approaches to explore the adaptability and resilience of coral holobionts to environmental change. Front Mar Sci 2:68Google Scholar
- Westinga E, Hoetjes PC (1981) The intrasponge fauna of Speciospongia vesparia (Porifera, Demospongiae) at Curaçao and Bonaire. Mar Biol 62:139–150CrossRefGoogle Scholar
- Wilkinson CR, Fay P (1979) Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature 279:527–529CrossRefGoogle Scholar
- Wörheide G (2006) Low variation in partial Cytochrome Oxidase Subunit I (COI) mitochondrial sequences in the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Mar Biol 148:907–912CrossRefGoogle Scholar
- Wörheide G, Epp LS, Macis L (2008) Deep genetic divergences among Indo-Pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae): founder effects, vicariance, or both? BMC Evol Biol 8:24CrossRefGoogle Scholar
- Wulff JL (1984) Sponge-mediated coral reef growth and rejuvenation. Coral Reefs 3:157–164CrossRefGoogle Scholar
- Yahel G, Post AF, Fabricius K, Marie D, Vaulot D, Genin A (1998) Phytoplankton distribution and grazing near coral reefs. Limnol Oceanogr 43:551–563CrossRefGoogle Scholar
- Yahel G, Sharp JH, Marie D, Häse C, Genin A (2003) In situ feeding and element removal in the symbiont-bearing sponge Theonella swinhoei: bulk DOC is the major source for carbon. Limnol Oceanogr 48:141–149CrossRefGoogle Scholar
- Yahel G, Marie D, Genin A (2005) InEx—a direct in situ method to measure filtration rates, nutrition, and metabolism of active suspension feeders. Limnol Oceanogr Methods 3:46–58CrossRefGoogle Scholar
- Yahia R, Hanora A, Fahmy N, Aly KA (2017) Quorum sensing signal production by sponge-associated bacteria isolated from the Red Sea, Egypt. Afr J Biotechnol 16:1688–1698CrossRefGoogle Scholar
- Yosief T, Rudi A, Wolde-ab Y, Kashman Y (1998a) Two new C22 1, 2-dioxane polyketides from the marine sponge Acarnus cf. bergquistae. J Nat Prod 61:491–493CrossRefGoogle Scholar
- Yosief T, Rudi A, Stein Z, Goldberg I, Gravalos GM, Schleyer M, Kashman Y (1998b) Asmarines AC; three novel cytotoxic metabolites from the marine sponge Raspailia sp. Tetrahedron Lett 39:3323–3326CrossRefGoogle Scholar
- Yosief T, Rudi A, Kashman Y (2000) Asmarines A−F, novel cytotoxic compounds from the marine sponge Raspailia species. J Nat Prod 63:299–304CrossRefGoogle Scholar
- Youssef DT (2004) Tasnemoxides A−C, new cytotoxic cyclic norsesterterpene peroxides from the Red Sea sponge Diacarnus erythraenus. J Nat Prod 67:112–114CrossRefGoogle Scholar
- Youssef DT (2005) Hyrtioerectines A−C, cytotoxic alkaloids from the Red Sea sponge Hyrtios erectus. J Nat Prod 68:1416–1419CrossRefGoogle Scholar
- Youssef DT, Mooberry SL (2006) Hurghadolide A and swinholide I, potent actin-microfilament disrupters from the Red Sea sponge Theonella swinhoei. J Nat Prod 69:154–157CrossRefGoogle Scholar
- Youssef DT, Yoshida WY, Kelly M, Scheuer PJ (2000) Polyacetylenes from a Red Sea sponge Callyspongia species. J Nat Prod 63:1406–1410CrossRefGoogle Scholar
- Youssef DT, Yoshida WY, Kelly M, Scheuer PJ (2001) Cytotoxic cyclic norterpene peroxides from a Red Sea sponge Diacarnus erythraenus. J Nat Prod 64:1332–1335CrossRefGoogle Scholar
- Youssef DT, Yamaki RK, Kelly M, Scheuer PJ (2002) Salmahyrtisol A, a novel cytotoxic sesterterpene from the Red Sea sponge Hyrtios erecta. J Nat Prod 65:2–6CrossRefGoogle Scholar
- Youssef DT, van Soest RW, Fusetani N (2003a) Callyspongenols A−C, new cytotoxic C22-polyacetylenic alcohols from a Red Sea sponge, Callyspongia species. J Nat Prod 66:679–681CrossRefGoogle Scholar
- Youssef DT, van Soest RW, Fusetani N (2003b) Callyspongamide A, a new cytotoxic polyacetylenic amide from the Red Sea sponge Callyspongia fistularis. J Nat Prod 66:861–862CrossRefGoogle Scholar
- Youssef DT, Singab ANB, van Soest RW, Fusetani N (2004) Hyrtiosenolides A and B, two new sesquiterpene γ-methoxybutenolides and a new sterol from a Red Sea sponge Hyrtios species. J Nat Prod 67:1736–1739CrossRefGoogle Scholar
- Youssef DT, Shaala LA, Emara S (2005) Antimycobacterial scalarane-based sesterterpenes from the Red Sea sponge Hyrtios erecta. J Nat Prod 68:1782–1784CrossRefGoogle Scholar
- Youssef DT, Shaala LA, Asfour HZ (2013) Bioactive compounds from the Red Sea marine sponge Hyrtios species. Mar Drugs 11:1061–1070CrossRefGoogle Scholar
- Youssef DT, Shaala LA, Mohamed GA, Badr JM, Bamanie FH, Ibrahim SR (2014) Theonellamide G, a potent antifungal and cytotoxic bicyclic glycopeptide from the Red Sea marine sponge Theonella swinhoei. Mar Drugs 12:1911–1923CrossRefGoogle Scholar
- Youssef DT, Badr JM, Shaala LA, Mohamed GA, Bamanie FH (2015a) Ehrenasterol and biemnic acid; new bioactive compounds from the Red Sea sponge Biemna ehrenbergi. Phytochem Lett 12:296–301CrossRefGoogle Scholar
- Youssef DT, Shaala LA, Alshali KZ (2015b) Bioactive hydantoin alkaloids from the Red Sea marine sponge Hemimycale arabica. Mar Drugs 13:6609–6619CrossRefGoogle Scholar
- Żółtowska-Aksamitowska S, Shaala LA, Youssef DT, Elhady SS, Tsurkan MV, Petrenko I, Wysokowski M, Tabachnick K, Meissner H, Ivanenko VN, Bechmann N (2018) First report on chitin in a non-verongiid marine demosponge: the Mycale euplectellioides case. Mar Drugs 16:68CrossRefGoogle Scholar
- Zundelevich A, Lazar B, Ilan M (2007) Chemical versus mechanical bioerosion of coral reefs by boring sponges-lessons from Pione cf. vastifica. J Exp Biol 210:91–96CrossRefGoogle Scholar