Advertisement

Appearance in Nature

  • Stefan C. MüllerEmail author
  • Kinko Tsuji
Chapter
Part of the The Frontiers Collection book series (FRONTCOLL)

Abstract

Many spirals and vortices appear in nature both in the inanimate and the living world. As examples of the non-living nature some spirals and vortices of various sizes are selected: spiral galaxies, hurricanes and tornadoes, aerodynamic turbulence, crystal growth on surfaces and carbon nanotubes. In the realm of living structures, we consider rigid spiral forms (for example, seashells and snails), as well as flexible ones like the tail of a chameleon or a sea horse. Beyond fauna we find in flora many flowers and leaves that are arranged in spiral form. A general spiral tendency in vegetation is discussed, following ideas proposed by J.W. Goethe. The Fibonacci numbers, which are closely related to the positioning of leaves, are introduced. Other interesting topics are Leonardo’s flying spiral, insect eyes and fish vortices.

References

  1. 1.
    E. Hubble, The Realm of the Nebulae (Dover Publications, Mineola, 1958)Google Scholar
  2. 2.
    C.C. Lin, F.H. Shu, On the spiral structure of disk galaxies. Astrophys. J. 140, 646–655 (1964)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Phillipps, The Structure & Evolution of Galaxies (Wiley, Hoboken, 2005), pp. 132–133Google Scholar
  4. 4.
    R.H. Eather, Majestic Lights: The Aurora in Science, History, and the Arts (American Geophysical Union, Washington, 1980)CrossRefGoogle Scholar
  5. 5.
    M.H. Carr, J.W. Head, Oceans on mars: an assessment of the observational evidence and possible fate. J. Geophys. Res. 108, 8-1–8-28 (2003)Google Scholar
  6. 6.
  7. 7.
  8. 8.
    J. Ross, S.C. Müller, C. Vidal, Chemical waves. Science 240, 460–465 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    S. Taneda, Downstream development of the wakes behind cylinders. J. Phys. Soc. Jpn. 14, 843–848 (1959)ADSCrossRefGoogle Scholar
  10. 10.
    T. von Kármán, Aerodynamics (McGraw-Hill, New York, 1963)zbMATHGoogle Scholar
  11. 11.
    H. Kleine, High-speed imaging of shock waves and their flow fields, in The Micro-World Observed by Ultra High-Speed Cameras—We See What You Don’t See, ed. by K. Tsuji (Springer Nature, Heidelberg, 2017), pp. 127–155Google Scholar
  12. 12.
    K. Agladze, J. Keener, S.C. Müller, A. Panfilov, Rotating spiral waves created by geometry. Science 264, 1746–1748 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    J. de Yoreo, T. Land, The secrets of crystal growth. Sci. Technol. Rev. (1995) https://str.llnl.gov/str/DeYoreo.html
  14. 14.
    K. Wada, Growth of CaCO\(_{3}\) crystals in bivalve shell mineralization. J. Jpn. Assoc. Cryst. Growth 12, 57–70 (1985)Google Scholar
  15. 15.
    S. Mann, Die Chemie der Form. Angew. Chem. 112, 3532–3548 (2000)CrossRefGoogle Scholar
  16. 16.
    C. Pintossi, G. Salvinelli, G. Drera, S. Pagliara, L. Sangaletti, S. Del Gobbo, M. Morbidoni, M. Scarselli, M. De Crescenzi, P. Castrucci, Direct evidence of chemically inhomogeneous, nanostructured, Si-O buried interfaces and their effect on the efficiency of carbon nanotube/Si photovoltaic heterojunctions. J. Phys. Chem. C 117, 18688–18696 (2013)CrossRefGoogle Scholar
  17. 17.
    J.W. von Goethe, Naturwissenschaftliche Schriften (Rudolf Steiner, Dornach, 1982)Google Scholar
  18. 18.
    J.W. von Goethe, Gedichte, in Werke, vol. 1 (Artemis & Winker, München, 1972), pp. 242–244Google Scholar
  19. 19.
    R. Ulshöfer, Johann Wolfgang von Goethe, Polarität und Steigerung - das Universalgesetz der Natur, der Geschichte und des künstlerischen Schaffens, in Literatur des 18. Jahrhunderts und der Romantik, in neuer Sicht (Königshausen and Neumann, Würzburg, 2010), pp. 106–109Google Scholar
  20. 20.
    R. von Martius, Goethe und Martius (Nemayer, Mittenwald, 1932)Google Scholar
  21. 21.
    S. Mainberger, “In the Vortex of the Spiral Tendency”—Questions of Aesthetics, Literature and Natural Sciences in the work of Goethe (engl. Version from “No remoinho da tendêencia-espiral” -Questões de estética, literatura e ciências naturais naobra de Goethe). Estud. Av. 24, 203–217 (2010). http://www.scielo.br/pdf/ea/v24n69/en_v24n69a13.pdf
  22. 22.
    J.W. von Goethe, Über die Spiraltendenz der Vegetation, in Naturwissenschaftliche Schriften (Rudolf Steiner, Dornach, 1982), pp. 217–238Google Scholar
  23. 23.
    P.H. Richter, R. Schranner, Leaf arrangement. Naturwissenschaften 65, 319–327 (1978)ADSCrossRefGoogle Scholar
  24. 24.
    H. Meinhard, The Algorithmic Beauty of Seashells, 4th edn. (Springer, Heidelberg, 2009)CrossRefGoogle Scholar
  25. 25.
    D. Staaf, Squid Empire: The Rise and Fall of the Cephalopods (University Press of New England, Lebanon, 2017)Google Scholar
  26. 26.
    A. Gierer, H. Meinhardt, A theory of biological pattern formation. Kybernetik 12, 30–39 (1972)Google Scholar
  27. 27.
    L. Sigler, Fibonacci’s Liber Abaci a Translation into Modern English of Leonardo Pisano’s Book of Calculation (Springer, New York, 2002)Google Scholar
  28. 28.
    F.M.J. van der Linden, Creating phyllotaxis from seed to flower, in Symmetry in Plants, ed. by R.V. Jeam, D. Barabé (World Scientific Publishing, Singapore, 1998)Google Scholar
  29. 29.
    T. Makry, Lichens from Baikal region (Siberia) new to Russia. Cryptogam. Mycol. 20, 329–334 (1999)CrossRefGoogle Scholar
  30. 30.
    A.E. Verrill, Report on the Anthozoa, and on some additional species dredged by the “Blake” in 1877–79, and by the U.S. fish commission steamer “Fish Hawk” in 1880–82. Bull. Mus. Comp. Zool. Harv. Coll. 11, 1–72 (1883)Google Scholar
  31. 31.
    L. Watling, A review of the genus Iridogorgia (Octocorallia: Chrysogorgiidae) and its relatives, chiefly from the North Atlantic Ocean. J. Mar. Biol. Assoc. U. K. 87, 393–402 (2007)Google Scholar
  32. 32.
    O.A. Timoshkin et al., Rapid ecological change in the coastal zone of Lake Baikal (East Siberia): is the site of the world’s greatest freshwater biodiversity in danger? J. Gt. Lakes Res. (2016).  https://doi.org/10.1016/j.jglr.2016.02.011
  33. 33.
    L. da Vinci, Paris Manuscript B (Collection of Institut de France, Paris), Folio 83vGoogle Scholar
  34. 34.
    G.A. Horridge, The eyes of the firefly Photuris. Proc. R. Soc. B 171, 445–463 (1969)ADSGoogle Scholar
  35. 35.
    J.J. Wolken, Invertebrate Photoreceptors, A Comparative Analysis (Academic, New York, 1971), pp. 57–61Google Scholar
  36. 36.
    A. Bewersdorff, P. Borckmans, S.C. Müller, Chemical pattern formation, in Fluid Science and Materials Science in Space, ed. by H.U. Walter (Springer, Berlin, 1987), p. 281Google Scholar
  37. 37.
    P. Popov, L.W. Honaker, M. Mirheydari, E.K. Mann, A. Jákli, Chiral nematic liquid crystal microlenses. Sci. Rep. 7, 1603 (2017)Google Scholar
  38. 38.
    E.E. Russell, S. Yuhui, Swarm Intelligence (Morgan Kaufmann, Burlington, 2001)Google Scholar
  39. 39.
    A. Vicsek, E. Ben-Jacob, I. Cohen, O. Shochet, Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226 (1995)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of PhysicsOtto von Guericke University MagdeburgMagdeburgGermany
  2. 2.Shimadzu Europa GmbHDuisburgGermany

Personalised recommendations