Advertisement

Electrochemical Behaviour of ECAP-Processed AM Series Magnesium Alloy

  • K. R. GopiEmail author
  • H. Shivananda Nayaka
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Equal channel angular pressing (ECAP) is a technique for inducing high strain into the material to achieve ultrafine grain refinement. AM80 magnesium was processed by ECAP with processing route BC. ECAP-processed samples were tested for microstructural studies and electrochemical measurements. Potentiodynamic polarization test revealed decrease in corrosion current density due to uniform refined microstructure of the processed samples. Increment in charge transfer resistance (Rt) was observed for ECAPed samples with increase in capacitive arc diameters in Nyquist plots showing increased corrosion resistance in comparison with as-cast condition. The increment in corrosion resistance is because of grain refinement and uniform dispersal of intermetallic particles, which improved development of protective layer and bonding due to increased grain boundary density by ECAP process.

Keywords

ECAP AM80 Microstructure Grain refinement Electrochemical measurements 

References

  1. 1.
    Kojima, Y (2000) Handbook Advanced Mg Technology. Kallos Publishing Co., Ltd., TokyoGoogle Scholar
  2. 2.
    Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zechetbauer MJ, Zhu YT (2006) Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation. JOM 58(4): 33–39CrossRefGoogle Scholar
  3. 3.
    Mordike BL, Ebert T (2001) Magnesium: properties-applications-potential. Mater. Sci. Eng., A 302(1): 37–45CrossRefGoogle Scholar
  4. 4.
    Chen W, Fergson D, Ferguson H (2009) Severe Plastic Deformation Techniques. Acta Metall. Sin. 13(1): 242–253Google Scholar
  5. 5.
    Lowe TC, Valiev RZ (2004) The Use of Severe Plastic Deformation Techniques in Grain Refinement. JOM 56(10): 64–68CrossRefGoogle Scholar
  6. 6.
    Estrin Y, Vinogradov A (2013) Extreme grain Refinement by Severe Plastic Deformation: A Wealth of Challenging Science. Acta Mater. 61(3): 782–817CrossRefGoogle Scholar
  7. 7.
    Azushima Kopp R, Korhonen A, Yang DY, Micari F, Lahoti GD, Groche P, Yanagimoto J, Tsuji N, Rosochowski A, Yanagida A (2008) Severe plastic deformation (SPD) processes for metals. CIRP Ann. Manuf. Techn. 57(2): 716–735CrossRefGoogle Scholar
  8. 8.
    Langdon TG, Furukawa M, Nemoto M, Horita Z (2000) Using equal-channel angular pressing for refining grain size. JOM 52(4): 30–33CrossRefGoogle Scholar
  9. 9.
    Segal VM, Raznikov VI, Drobyshewsky AE, Kopylov VI (1981) Russian Metallurgy 1: 99Google Scholar
  10. 10.
    Verlinden B (2005) Severe plastic deformation of metals. Metalurgija 11(3): 165–182CrossRefGoogle Scholar
  11. 11.
    Hoche H, Blawert C, Broszeit E, Berger C (2005) Galvanic corrosion properties of differently PVD treated magnesium die cast alloy AZ91. Surf. Coat. Technol 193(1): 223–229CrossRefGoogle Scholar
  12. 12.
    Watanabe K, Matsuda K, Gonoji T, Kawabata T, Sakakibara K, Sanpei Y, Saikawa S, Ikeno S (2010) Effect of Casting Method and Al Contents on Microstructure in AM-Type Magnesium Alloys. Mater. Sci. Forum 654: 663–666CrossRefGoogle Scholar
  13. 13.
    Avedessian MM, Baker H (1999) Magnesium and Magnesium alloys. ASM International, Materials Park, OH: 14–16.Google Scholar
  14. 14.
    Pardo A, Merino MC, Coy AE, Arrabal R, Viejo F, Matykina E (2008) Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt% NaCl. Corros. Sci. 50: 823–834CrossRefGoogle Scholar
  15. 15.
    Pardo A, Merino MC, Coy AE, Viejo F, Arrabal R, Feliu Jr. S (2008) Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media. Electrochim. Acta 53: 7890–7902CrossRefGoogle Scholar
  16. 16.
    Minarik P, Kral R, Janecek M (2013) Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys. Appl. Surf. Sci. 281: 44–48CrossRefGoogle Scholar
  17. 17.
    Hadzima B, Janecek M, Bukovina M, Kral R (2009) Electrochemical properties of fine-grained AZ31 magnesium alloy. Int. J. Mater. Res. 100: 1213–1216CrossRefGoogle Scholar
  18. 18.
    Xin LI, Jiang JH, Zhao YH, Wen DJ, Zhu YT (2015) Effect of equal-channel angular pressing and aging on corrosion behavior of ZK60 Mg alloy. Trans. Nonferr. Met. Soc. China 25 (12): 3909–3920Google Scholar
  19. 19.
    Orlov D, Ralston KD, Birbilis N, Estrin Y (2011) Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing. Acta Materialia 59(15): 6176–6186CrossRefGoogle Scholar
  20. 20.
    Kral R, Minarik P, Lesna IK, Skublova L, Harcuba P, Hadzima B, Janecek M (2011) Effect of grain refinement on electrochemical characteristics in AE42 magnesium alloy. In WDS’11 Proceedings of Contributed Papers, Part III: 136.Google Scholar
  21. 21.
    Song D, Ma AB, Jiang JH, Lin PH, Yang DH, Fan JF (2011) Corrosion behaviour of bulk ultra-fine grained AZ91D magnesium alloy fabricated by equal-channel angular pressing. Corros. Sci. 53(1): 362–373CrossRefGoogle Scholar
  22. 22.
    Janecek M, Cizek J, Gubicza J, Vratna J (2012) Microstructure and dislocation density evolutions in MgAlZn alloy processed by severe plastic deformation. J. Mater. Sci. 47(22): 7860–7869CrossRefGoogle Scholar
  23. 23.
    Jahadi R, Sedighi M, Jahed H (2014) ECAP effect on the micro-structure and mechanical properties of AM30 magnesium alloy. Mater. Sci. Eng. A 593: 178–184CrossRefGoogle Scholar
  24. 24.
    Akbaripanah F, Fereshteh-Saniee F, Mahmudi R, Kim H K (2013) The influences of extrusion and equal channel angular pressing (ECAP) processes on the fatigue behavior of AM60 magnesium alloy. Mater. Sci. Eng., A 565: 308–316CrossRefGoogle Scholar
  25. 25.
    Feng XM, Ai TT (2009) Microstructure evolution and mechanical behavior of AZ31 Mg alloy processed by equal-channel angular pressing. Trans. Non-Ferrous Met. Soc. China 19(2): 293–298CrossRefGoogle Scholar
  26. 26.
    Ralston KD, Birbilis N (2010) Effect of grain size on corrosion: a review. Corrosion 66(7): 075005–075005CrossRefGoogle Scholar
  27. 27.
    Jiang J, Aibin MA, Saito N, Zhixin SHEN, Dan SONG, Fumin LU, Nishida Y, Donghui YANG, Pinghua LIN (2009) Improving corrosion resistance of RE-containing magnesium alloy ZE41A through ECAP. J. Rare Earths 27(5): 848–852CrossRefGoogle Scholar
  28. 28.
    Song D, Ma A, Jiang J, Lin P, Yang D, Fan J (2010) Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution. Corros. Sci. 52(2): 481–490CrossRefGoogle Scholar
  29. 29.
    Orlov D, Ralston KD, Birbilis N, Estrin Y (2011) Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing. Acta Mater. 59(15): 6176–6186CrossRefGoogle Scholar
  30. 30.
    Pardo A, Merino MC, Coy AE, Viejo F, Arrabal R, Feliu Jr. S (2008) Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys inchloride media. Electrochim. Acta 53(27): 7890–7902CrossRefGoogle Scholar
  31. 31.
    Song G (2005) Recent progress in corrosion and protection of magnesium alloys. Adv. Eng. Mater. 7(7): 563–586CrossRefGoogle Scholar
  32. 32.
    Johansen NA, Adams GB, Van Rysselberghe P (1957) Anodic oxidation of aluminum, chromium, hafnium, tantalum, titanium, vanadium, and zirconium at very low current densities. J. Electrochem. Soc. 104(6): 339–346CrossRefGoogle Scholar
  33. 33.
    Wang L, Shinohara T, Zhang BP (2009) Corrosion behavior of AZ31 magnesium alloy in dilute sodium chloride solutions. Zairyo-to-Kankyo 58(3): 105–110CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringRajeev Institute of TechnologyHassanIndia
  2. 2.Department of Mechanical EngineeringNational Institute of Technology KarnatakaSurathkalIndia

Personalised recommendations