Thermo-mechanical Processing of EZK Alloys in a Synchrotron Radiation Beam

  • D. TolnaiEmail author
  • M.-A. Dupont
  • S. Gavras
  • K. Mathis
  • K. Horvath
  • A. Stark
  • N. Schell
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Nd, a rare earth element with low solid solubility in Mg, is an ideal alloying element to improve elevated temperature yield strength and creep resistance cost effectively. The addition of Zn leads to further improvement in the elevated temperature properties; therefore, Mg–Nd–Zn alloys are prospective materials for structural and medical applications. In situ synchrotron radiation diffraction was performed during compression at 200 and 350 ℃ for Mg3NdxZn (x = 0, 0.5, 1, 2 wt%) alloys up to a deformation of 0.3 with a deformation rate of 10−3 s−1. The compressed samples were subsequently subjected to electron backscattered diffraction. The results show that at 200 ℃ the addition of Zn increased the ductility. At the beginning of plastic deformation twinning was the dominant deformation mechanism complemented by sub-grain formation at a later stage. At 350 ℃, the compression strength was increased with the addition of Zn and the microstructure of the samples underwent partial dynamic recrystallization during compression.


Mg–Nd–Zn alloys Intermetallic phases In situ synchrotron radiation diffraction Elevated temperature compression 



The authors acknowledge the Deutsches Elektronen-Synchrotron for the provision of facilities within the framework of the proposal I-20170459 EC. K. M. is grateful for support of the Czech Science Foundation Grant number 14-36566G. K. H. acknowledges the support of the Operational Programme Research, Development and Education, The Ministry of Education, Youth and Sports (OP RDE, MEYS) [CZ.02.1.01/0.0/0.0/16_013/0001794]. K. M. and K. H. are grateful for the Financial support of the Czech Science Foundation under the contract 18-07140S.


  1. 1.
    M. Pekguleryuz, K. Kainer, A. Kaya, Fundamentals of magnesium alloy metallurgy, first ed. Woodhead, Philadelphia, 2013.CrossRefGoogle Scholar
  2. 2.
    M.M. Avedesian, H. Baker, Magnesium and magnesium alloys, ASM Speciality Handbook, ASM International, United States of America, 1999.Google Scholar
  3. 3.
    M.H. Yoo et al.: “Nonbasal deformation modes of metals and alloys: Role of dislocation source and mobility” Metall. Mater. Trans. A 41 (2002) 813–822.Google Scholar
  4. 4.
    H. Hermawan, D. Dubé, D. Mantovani, “Developments in metallic biodegradable stents” Acta Biomaterialia 6 (2010) 1693–1697.CrossRefGoogle Scholar
  5. 5.
    S.M. He et al.: Comparison of the microstructure and mechanical properties of a ZK60 alloy with and without 1.3 wt.% gadolinium addition” Mater. Sci. Eng. A, 433 (2006) 175–181.CrossRefGoogle Scholar
  6. 6.
    C. Ma et al.: “Tensile properties of extruded ZK60–RE alloys” Mater. Sci. Eng. A. 349 (2003) 207–212.CrossRefGoogle Scholar
  7. 7.
    H.T. Zhou et al.: “Effect of Nd and Y on the microstructure and mechanical properties of ZK60 alloy” Mater. Sci. Eng. A, 445–446 (2007) 1–6.Google Scholar
  8. 8.
    N. Stanford et al.: “Effect of microalloying with rare-earth elements on the texture of extruded magnesium-based alloys” Scripta. Mater. 59 (2008) 772–775.CrossRefGoogle Scholar
  9. 9.
    L.L. Rokhlin, Magnesium Alloys Containing Rare Earth Metals Taylor & Francis: London, UK, 2003.Google Scholar
  10. 10.
    P.H. Fu et al.: “Effects of heat treatments on the microstructures and mechanical properties of Mg–3Nd–0.2Zn–0.4Zr (wt.%) alloy” Mat. Sci. Eng. A 486. (2008) 183–192.Google Scholar
  11. 11.
    D. Wu, R.S. Chen, W. Ke: “Microstructure and mechanical properties of a sand-cast Mg–Nd–Zn alloy”. Mater. Des.58. (2014) 324–331.CrossRefGoogle Scholar
  12. 12.
    J. Zhang et al.: “The degradation and transport mechanism of a Mg-Nd-Zn-Zr stent in rabbit common carotid artery: A 20-month study” Acta Biomater. 69 (2018) 372–384.CrossRefGoogle Scholar
  13. 13.
    I. Lonardelli et al.: “In situ observation of texture evolution during α → β and β → α phase transformations in titanium alloys investigated by neutron diffraction” Acta Mater. 55. (2007) 5718–5727.CrossRefGoogle Scholar
  14. 14.
    K.-D. Liss and K. Yan: Thermo-mechanical processing in a synchrotron beam, Mater. Sci. Eng. A, 528, (2010) 11–27.CrossRefGoogle Scholar
  15. 15.
    R.H. Buzolin et al.: In situ synchrotron radiation diffraction study of the role of Gd, Nd on the elevated temperature compression behavior of ZK40 Mat. Sci. Eng. A, 640, (2015) 129–136.CrossRefGoogle Scholar
  16. 16.
    R.H. Buzolin et al.: In situ synchrotron radiation diffraction investigation of the compression behaviour at 350 °C of ZK40 alloys with addition of CaO and Y Mat. Sci. Eng. A, 664, (2016) 2–9.CrossRefGoogle Scholar
  17. 17.
    F.R. Elsayed et al., Magnesium permanent mold Castings optimization Materials Science Forum 690 (2011) 65–68.CrossRefGoogle Scholar
  18. 18.
    D. Tolnai et al.: Study of the solidification of AS alloys combining in situ synchrotron diffraction and differential scanning calorimetry Mater Sci Forum, 765, (2013) 286–290.Google Scholar
  19. 19.
    E. Meza-García et al.: “Influence of alloying elements and extrusion process parameter on the recrystallization process of Mg-Zn alloys” Materials Today: Proceedings 2S (2015) 19 –25.Google Scholar
  20. 20.
    S. Gavras et al.: “The Role of Zn Additions on the Microstructure and Mechanical Properties of Mg–Nd–Zn Alloys” Inter Metalcast. (2017) 1.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • D. Tolnai
    • 1
    Email author
  • M.-A. Dupont
    • 1
  • S. Gavras
    • 1
  • K. Mathis
    • 2
  • K. Horvath
    • 2
    • 3
  • A. Stark
    • 1
  • N. Schell
    • 1
  1. 1.Institute of Materials Science, Helmholtz-Zentrum GeesthachtGeesthachtGermany
  2. 2.Department of Physics of MaterialsCharles University PraguePrague 2Czech Republic
  3. 3.Nuclear Physics Institute of the AVCRŘež-HusinecCzech Republic

Personalised recommendations