Advertisement

Modeling the 3D Plastic Anisotropy of a Magnesium Alloy Processed Using Severe Plastic Deformation

  • J. S. HerringtonEmail author
  • Y. Madi
  • J. Besson
  • A. A. Benzerga
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

The mechanical response of magnesium AZ31 processed using severe plastic deformation is characterized using a two-surface, pressure-insensitive plasticity model. The model captures the 3D plastic anisotropy and the tension–compression asymmetry as the behavior evolves during straining. The model may be viewed as a reduced-order quasi-crystal plasticity model, whereby the two activation surfaces represent glide- and twinning-dominated flow. The two-surface formulation enables independent, yet coupled, hardening laws in terms of effective plastic strains accumulated on either generic deformation system. Material identification was completed using tension and compression specimens oriented along the principal directions of the processed material, E, L, and F, as well as off-axes specimens that bisected the principal planes E–F, L–F, and L–E. Using the nominal stress–strain and lateral strain data from the experiments, this model can capture the anisotropic behavior of this material.

Keywords

Orthotropy Reduced-order model ECAE 

Notes

Acknowledgements

JSH and AAB gratefully acknowledge support of this work by the National Science Foundation under grant number CMMI-1563580.

References

  1. 1.
    W. F. Hosford. The Mechanics of Crystals and Textured Polycrystals. Oxford University Press, Oxford, 1993.Google Scholar
  2. 2.
    X. Y. Lou, M. Li, R. K. Boger, S. R. Agnew, and R. H. Wagoner. Hardening evolution of AZ31B Mg sheet. International Journal of Plasticity, 23:44–86, 2007.CrossRefGoogle Scholar
  3. 3.
    A. S. Khan, A. Pandey, T. Gnaupel-Herold, and R. K. Mishra. Mechanical response and texture evolution of az31 alloy at large strains for different strain rates and temperatures. International Journal of Plasticity, 27:688–706, 2011.CrossRefGoogle Scholar
  4. 4.
    D. G. Tari, M. J. Worswick, U. Ali, and M. A. Gharghouri. Mechanical response of AZ31B magnesium alloy: Experimental characterization and material modeling considering proportional loading at room temperature. International Journal of Plasticity, 55:247–267, 2014.CrossRefGoogle Scholar
  5. 5.
    B. Kondori and A. A. Benzerga. Fracture strains, damage mechanisms and anisotropy in a magnesium alloy across a range of stress triaxialities. Experimental Mechanics, 54:493–499, 2014.CrossRefGoogle Scholar
  6. 6.
    B. Kondori, Y. Madi, J. Besson, and A. A. Benzerga. Evolution of the 3D plastic anisotropy of HCP metals: experiments and modeling. International Journal of Plasticity, 2018. In press.Google Scholar
  7. 7.
    S. Basu, E. Dogan, B. Kondori, I. Karaman, and A. A. Benzerga. Towards Designing Anisotropy for Ductility Enhancement: A Theory-Driven Investigation in Mg-alloys. Acta Materialia, 131:349–362, 2017.CrossRefGoogle Scholar
  8. 8.
    R. Hill. A theory of yielding and plastic flow of anisotropic solids. Proceedings of the Royal Society of London A, 193:281–297, 1948.Google Scholar
  9. 9.
    O. Cazacu, B. Plunkett, and F. Barlat. Orthotropic yield criterion for hexagonal closed packed metals. International Journal of Plasticity, 22:1171–1194, 2006.CrossRefGoogle Scholar
  10. 10.
    J. H. Kim, D. Kim, Y.-S. Lee, M.-G. Lee, K. Chung, H.-Y. Kim, and R. H. Wagoner. A temperature-dependent elasto-plastic constitutive model for magnesium alloy AZ31 sheets. International Journal of Plasticity, 50:66–93, 2013.CrossRefGoogle Scholar
  11. 11.
    D. Steglich, X. Tian, and J. Besson. Mechanism-based modelling of plastic deformation in magnesium alloys. European Journal of Mechanics, 55:289–303, 2016.CrossRefGoogle Scholar
  12. 12.
    M. Al-Maharbi, I. Karaman, I. J. Beyerlein, D. Foley, K. T. Hartwig, L. J. Kecskes, and S. N. Mathaudhu. Microstructure, crystallographic texture, and plastic anisotropy evolution in an Mg alloy during equal channel angular extrusion processing. Materials Science and Engineering: A, 528:7616–7627, 2011.CrossRefGoogle Scholar
  13. 13.
    S. R. Kalidindi. Incorporation of deformation twinning in crystal plasticity models. Journal of the Mechanics and Physics of Solids, 46:267–290, 1998.CrossRefGoogle Scholar
  14. 14.
    B. Selvarajou, B. Kondori, A. A. Benzerga, and S. P. Joshi. On Plastic Flow in Notched Hexagonal Close Packed Single Crystals. Journal of the Mechanics and Physics of Solids, 94:273–297, 2016.CrossRefGoogle Scholar
  15. 15.
    F. Barlat, D. J. Lege, and J. C. Brem. A six-component yield function for anisotropic materials. International Journal of Plasticity, 7:693–712, 1991.CrossRefGoogle Scholar
  16. 16.
    D. W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math., 11:431–441, 1963.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • J. S. Herrington
    • 1
    Email author
  • Y. Madi
    • 2
    • 3
  • J. Besson
    • 2
  • A. A. Benzerga
    • 1
    • 4
  1. 1.Department of Aerospace EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Mines ParisTech, PSL Research University, MAT-Centre des MatériauxEvry CedexFrance
  3. 3.Ermess, EPF-Ecole d’ingénieur-e-sSceauxFrance
  4. 4.Department of Materials Science and EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations