Recent Progress in Development and Applications of Mg Alloy Thermodynamic Database

  • Rainer Schmid-FetzerEmail author
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Recent progress in the development of the thermodynamic database for multicomponent magnesium alloys, PanMg, is summarized and applications are highlighted. Precipitation simulations by combining thermodynamic and mobility databases for Mg alloys with the PanPrecipitation module of Pandat are also summarized. These simulations can serve as virtual experiments to understand the effects of alloy composition and heat treatment condition on the target properties therefore providing guidance for the design of real experiments, saving time, and reducing cost. Applications of PanMg are exemplified in a wide spectrum of Mg alloy design and related processing parameters, such as new creep resistant cast alloys, castability and hot-tearing susceptibility, semisolid metal processing, ductility design and extrusion, kinetics and precipitation simulation, low density high entropy alloys, corrosion and recycling alloys, and oxidation and surface design. The usefulness of the CALPHAD modeling tool in Mg technology is demonstrated in more detail for the selective high temperature oxidation of Mg alloys using calculations with PanMg.


Database development Magnesium alloys Computational thermodynamics Kinetics Applications 


  1. 1.
    L Kaufman, H Bernstein, Computer Calculation of Phase Diagrams, New York: Academic Press; 1970.Google Scholar
  2. 2.
    HL Lukas, SG Fries, B Sundman, Computational thermodynamics: the CALPHAD method, Cambridge University Press; 2007.Google Scholar
  3. 3.
    R Kampmann, R Wagner, Kinetics of precipitation in metastable binary alloys -theory and application to Cu-1.9 at % Ti and Ni-14 at % Al, In: P Haasen, V Gerold, R Wagner editors Decomposition of Alloys: the Early Stages, Proceedings of the 2nd Acta-Scripta Metallurgica Conference: Elsevier Inc.; 1984, pp. 91–103.Google Scholar
  4. 4.
    W Cao, F Zhang, S-L Chen, C Zhang, YA Chang, An Integrated Computational Tool for Precipitation Simulation, JOM, 2011; 63: 29–34.CrossRefGoogle Scholar
  5. 5.
    W Cao, SL Chen, F Zhang, K Wu, Y Yang, YA Chang, R Schmid-Fetzer, WA Oates, PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation, Calphad, 2009; 33: 328–42.CrossRefGoogle Scholar
  6. 6.
    A Pisch, R Schmid-Fetzer, Development of a thermodynamic Mg-alloy database by experiments and modeling, In: Magnesium Alloys and their Applications, Wolfsburg; Germany; 1998, pp. 139–44.Google Scholar
  7. 7.
    R Schmid-Fetzer, J Gröbner, Focused Development of Magnesium Alloys using the Calphad Approach, Advanced Engineering Materials, 2001; 3: 947–61.CrossRefGoogle Scholar
  8. 8.
    R Schmid-Fetzer, A Janz, J Gröbner, M Ohno, Aspects of quality assurance in a thermodynamic Mg alloy database, Advanced Engineering Materials, 2005; 7: 1142–9.CrossRefGoogle Scholar
  9. 9.
    R Schmid-Fetzer, J Groebner, D Mirkovic, A Janz, A Kozlov, Constitution of Magnesium Alloys, In: R Beals, M Pekguleryuz, N Neelameggham editors Magnesium Technology 2007: TMS (The Minerals, Metals & Materials Society); 2007, pp. 339–44.Google Scholar
  10. 10.
    J Gröbner, A Janz, A Kozlov, D Mirkovic, R Schmid-Fetzer, Phase diagrams of advanced magnesium alloys containing Al, Ca, Sn, Sr and Mn, JOM, 2008; 60: 32–8.CrossRefGoogle Scholar
  11. 11.
    R Schmid-Fetzer, J Gröbner, Thermodynamic database for Mg alloys-progress in multicomponent modeling, Metals, 2012; 2: 377–98.CrossRefGoogle Scholar
  12. 12.
    J Gröbner, R Schmid-Fetzer, Key issues in a thermodynamic Mg alloy database, Metallurgical and Materials Transactions A, 2013; 44: 2918–34.CrossRefGoogle Scholar
  13. 13.
    R Schmid-Fetzer, Progress in Thermodynamic Database Development for ICME of Mg Alloys, In: MV Manuel, A Singh, M Alderman, NR Neelameggham editors Magnesium Technology 2015: Springer International Publishing; 2015, pp. 283–7.Google Scholar
  14. 14.
    R. Schmid-Fetzer, F. Zhang, The light alloy Calphad databases PanAl and PanMg, Calphad, 61 (2018) 246–263. Scholar
  15. 15.
    O Klag, J Gröbner, G Wagner, R Schmid-Fetzer, D Eifler, Microstructural and thermodynamic investigations on friction stir welded Mg/Al-joints, International Journal of Materials Research, 2014; 105: 145–55.CrossRefGoogle Scholar
  16. 16.
    R Schmid-Fetzer, D Andersson, PY Chevalier, L Eleno, O Fabrichnaya, UR Kattner, B Sundman, C Wang, A Watson, L Zabdyr, M Zinkevich, Assessment techniques, database design and software facilities for thermodynamics and diffusion, Calphad, 2007; 31: 38–52.CrossRefGoogle Scholar
  17. 17.
    A Janz, J Gröbner, R Schmid-Fetzer, Thermodynamics and Constitution of Mg-Al-Ca-Sr-Mn Alloys: Part II. Procedure for Multicomponent Key Sample Selection and Application to the Mg-Al-Ca-Sr and Mg-Al-Ca-Sr-Mn Systems, Journal of Phase Equilibria and Diffusion, 2009; 30: 157–75.CrossRefGoogle Scholar
  18. 18.
    A Janz, J Gröbner, D Mirković, M Medraj, J Zhu, YA Chang, R Schmid-Fetzer, Experimental study and thermodynamic calculation of Al-Mg-Sr phase equilibria, Intermetallics, 2007; 15: 506–19.CrossRefGoogle Scholar
  19. 19.
    H Kaufmann, PJ Uggowitzer, Metallurgy and Processing of High-Integrity Light Metal Pressure Castings, Fachverlag Schiele & Schoen; 2007.Google Scholar
  20. 20.
    AA Luo, Recent magnesium alloy development for elevated temperature applications, International Materials Reviews, 2004; 49: 13–30.CrossRefGoogle Scholar
  21. 21.
    AA Luo, BR Powell, AK Sachdev, Computational phase equilibria and experimental investigation of magnesium-aluminum-calcium alloys, Intermetallics, 2012; 24: 22–9.CrossRefGoogle Scholar
  22. 22.
    XW Zheng, AA Luo, C Zhang, J Dong, RA Waldo, Directional Solidification and Microsegregation in a Magnesium-Aluminum-Calcium Alloy, Metallurgical and Materials Transactions A, 2012; 43: 3239–48.Google Scholar
  23. 23.
    AA Luo, AK Sachdev, Microstructure and Mechanical Properties of Mg–Al–Mn and Mg–Al–SnAlloys, In: A Nyberg, SR Agnew, NR Neelameggham, Mo Pekguleryuz editors Magnesium Technology 2009: TMS, Warrendale, Pennsylvania; 2009, pp. 437–43.Google Scholar
  24. 24.
    AA Luo, P Fu, L Peng, X Kang, Z Li, T Zhu, Solidification Microstructure and Mechanical Properties of Cast Magnesium-Aluminum-Tin Alloys, Metallurgical and Materials Transactions A, 2012; 43: 360–8.CrossRefGoogle Scholar
  25. 25.
    A Klarner, W Sun, J Meier, A Luo, Development of Mg-Al-Sn-Si Alloys Using A Calphad Approach, In: A Singh, K Solanki, MV Manuel, NR Neelameggham editors Magnesium Technology 2016: John Wiley & Sons, Inc.; 2016, pp. 79–82.Google Scholar
  26. 26.
    AD Klarner, W Sun, J Miao, AA Luo, Microstructure and Mechanical Properties of High Pressure Die Cast Mg–Al–Sn–Si Alloys, In: K Solanki, D Orlov, A Singh, N Neelameggham editors Magnesium Technology 2017: Springer, Cham; 2017, pp. 289–95.Google Scholar
  27. 27.
    P Gunde, A Schiffl, PJ Uggowitzer, Influence of yttrium additions on the hot tearing susceptibility of magnesium–zinc alloys, Materials Science and Engineering: A, 2010; 527: 7074–9.CrossRefGoogle Scholar
  28. 28.
    MB Djurdjevic, R Schmid-Fetzer, Thermodynamic calculation as a tool for thixoforming alloy and process development, Materials Science and Engineering: A, 2006; 417: 24–33.CrossRefGoogle Scholar
  29. 29.
    G Cao, C Zhang, H Cao, YA Chang, S Kou, Hot-Tearing Susceptibility of Ternary Mg-Al-Sr Alloy Castings, Metallurgical and Materials Transactions A, 2010; 41: 706–16.CrossRefGoogle Scholar
  30. 30.
    G Cao, I Haygood, S Kou, Onset of Hot Tearing in Ternary Mg-Al-Sr Alloy Castings, Metallurgical and Materials Transactions A, 2010; 41: 2139–50.CrossRefGoogle Scholar
  31. 31.
    A Kozlov, M Djurdjevic, R Schmid-Fetzer, Thermodynamic Simulation of Phase Formation During Blending of Mg-Alloys by Thixomolding, Advanced Engineering Materials, 2007; 9: 731–8.CrossRefGoogle Scholar
  32. 32.
    D Mirković, R Schmid-Fetzer, Solidification curves for commercial Mg alloys obtained from heat transfer modeled DTA experiments, International Journal of Materials Research, 2006; 97: 119–29.CrossRefGoogle Scholar
  33. 33.
    D Mirković, R Schmid-Fetzer, Solidification curves for commercial Mg alloys determined from differential scanning calorimetry with improved heat transfer modeling, Metallurgical and Materials Transactions A, 2007; 38: 2575–92.CrossRefGoogle Scholar
  34. 34.
    HM Guo, FM Wen, XJ Yang, HL Jin, AS Zhang, Thermodynamic analysis of processability of Mg-Al-Zn-Mn alloys for rheocasting, Materials Science and Technology, 2015; 31: 1903–9.CrossRefGoogle Scholar
  35. 35.
    S Liang, R Chen, E Han, Thermodynamic predictions of Mg-Al-Ca alloy compositions amenable to semi-solid forming, International Journal of Materials Research, 2010; 101: 256–64.CrossRefGoogle Scholar
  36. 36.
    AC Hanzi, FHD Torre, AS Sologubenko, P Gunde, R Schmid-Fetzer, M Kuehlein, JF Loffler, PJ Uggowitzer, Design strategy for microalloyed ultra-ductile magnesium alloys, Philosophical Magazine Letters, 2009; 89: 377–90.CrossRefGoogle Scholar
  37. 37.
    R Schmid-Fetzer, A Kozlov, Thermodynamic aspects of grain growth restriction in multicomponent alloy solidification, Acta Materialia, 2011; 59: 6133–44.CrossRefGoogle Scholar
  38. 38.
    AA Luo, C Zhang, AK Sachdev, Effect of eutectic temperature on the extrudability of magnesium–aluminum alloys, Scripta Materialia, 2012; 66: 491–4.CrossRefGoogle Scholar
  39. 39.
    C Zhang, W Cao, S-L Chen, J Zhu, F Zhang, AA Luo, R Schmid-Fetzer, Precipitation Simulation of AZ91 Alloy, JOM, 2014; 66: 389–96.CrossRefGoogle Scholar
  40. 40.
    A Kozlov, M Ohno, TA Leil, N Hort, KU Kainer, R Schmid-Fetzer, Phase Equilibria, Thermodynamics and Solidification Microstructures of Mg-Sn-Ca Alloys, Part 2. Prediction of phase formation in Mg-rich Mg-Sn-Ca cast alloys, Intermetallics, 2008; 16: 316–21.CrossRefGoogle Scholar
  41. 41.
    AA Luo, W Sun, W Zhong, J-C Zhao, Computational thermodynamics and kinetics for magnesium alloy development: computational thermodynamics and CALPHAD modeling prove useful for selecting and developing new magnesium alloys, Advanced Materials and Processes, 2015; 173: 26–30.Google Scholar
  42. 42.
    X Xia, W Sun, AA Luo, DS Stone, Precipitation evolution and hardening in Mg-Sm-Zn-Zr alloys, Acta Materialia, 2016; 111: 335–47.CrossRefGoogle Scholar
  43. 43.
    X Xia, A Sanaty-Zadeh, C Zhang, AA Luo, DS Stone, Experimental investigation and simulation of precipitation evolution in Mg-3Nd-0.2Zn alloy, Calphad, 2018; 60: 58–67.Google Scholar
  44. 44.
    W Sun, X Huang, AA Luo, Phase formations in low density high entropy alloys, Calphad, 2017; 56: 19–28.CrossRefGoogle Scholar
  45. 45.
    S-M Liang, R Schmid-Fetzer, Evaluation of Calphad Approach and Empirical Rules on the Phase Stability of Multi-principal Element Alloys, Journal of Phase Equilibria and Diffusion, 2017; 38: 369–81.CrossRefGoogle Scholar
  46. 46.
    M Liu, PJ Uggowitzer, AV Nagasekhar, P Schmutz, M Easton, G-L Song, A Atrens, Calculated phase diagrams and the corrosion of die-cast Mg–Al alloys, Corrosion Science, 2009; 51: 602–19.CrossRefGoogle Scholar
  47. 47.
    C Blawert, D Fechner, D Höche, V Heitmann, W Dietzel, KU Kainer, P Živanović, C Scharf, A Ditze, J Gröbner, R Schmid-Fetzer, Magnesium secondary alloys: Alloy design for magnesium alloys with improved tolerance limits against impurities, Corrosion Science, 2010; 52: 2452–68.CrossRefGoogle Scholar
  48. 48.
    DS Aydin, Z Bayindir, M Hoseini, MO Pekguleryuz, The high temperature oxidation and ignition behavior of Mg–Nd alloys part I: The oxidation of dilute alloys, Journal of Alloys and Compounds, 569 (2013) 35–44. Scholar
  49. 49.
    DS Aydin, Z Bayindir, MO Pekguleryuz, The high temperature oxidation behavior of Mg–Nd alloys. Part II: The effect of the two-phase microstructure on the on-set of oxidation and on oxide morphology, Journal of Alloys and Compounds, 584 (2014) 558–565. Scholar
  50. 50.
    B-H Kim, S-H Ha, Y-O Yoon, H-K Lim, SK Kim, D-H Kim, Effect of Ca addition on selective oxidation of Al3Mg2 phase in Al-5 mass% Mg alloy, Materials Letters, 228 (2018) 108–111. Scholar
  51. 51.
    AC Hänzi, P Gunde, M Schinhammer, PJ Uggowitzer, On the biodegradation performance of an Mg-Y-RE alloy with various surface conditions in simulated body fluid, Acta Biomaterialia, 2009; 5: 162–71.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Institute of Metallurgy, Clausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations