Microstructures, Corrosion and Mechanical Properties of Mg–Si Alloys as Biodegradable Implant Materials

  • Weidan Wang
  • Ming Gao
  • Yuanding Huang
  • Lili TanEmail author
  • Ke Yang
  • Norbert HortEmail author
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Magnesium alloys attracted more and more attentions as biodegradable implant materials because of their properties similar to cortical bone. From the perspective of element biosafety and dietetics, the ideal alloying elements suitable for biodegradable applications should be those essential to or naturally presented in the human body. This study presents a novel aluminum-free magnesium alloy system with Si selected as a major alloying element, due to its superior biocompatibility in biological environment, especially in bone regeneration and repairment. Mg–Si binary alloys with different Si contents were prepared in a permanent mould via gravity casting and direct-chill casting. The microstructures, corrosion properties and mechanical properties were inves- tigated as a function of alloy composition.


Magnesium alloys Permanent mould casting Microstructure Corrosion properties 



The first author would like to acknowledge the Chinese Scholarship Council (CSC) for a scholarship. The research was supported by Key program of China on biomedical materials research and tissue and organ replacement (No. 2016YFC1101804, 2016YFC1100604) and funding from Institute of Metal Research, Chinese Academy of Sciences (No. 2015-ZD01). Sincerest gratitude goes to the colleagues from Magnesium Innovation Centre (HZG) for their technical supports.


  1. 1.
    J. Li, G. Sha, T. Wang, W. Jie, S. Ringer, Precipitation microstructure and age-hardening response of an Mg–Gd–Nd–Zn–Zr alloy, Materials Science and Engineering: A 534 (2012) 1–6.CrossRefGoogle Scholar
  2. 2.
    G. Riontino, M. Massazza, D. Lussana, P. Mengucci, G. Barucca, R. Ferragut, A novel thermal treatment on a Mg–4.2 Y–2.3 Nd–0.6 Zr (WE43) alloy, Materials Science and Engineering: A 494(1–2) (2008) 445–448.CrossRefGoogle Scholar
  3. 3.
    D. Zhao, F. Witte, F. Lu, J. Wang, J. Li, L. Qin, Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective, Biomaterials 112 (2017) 287–302.CrossRefGoogle Scholar
  4. 4.
    F. Witte, N. Hort, C. Vogt, S. Cohen, K.U. Kainer, R. Willumeit, F. Feyerabend, Degradable biomaterials based on magnesium corrosion, Current opinion in solid state and materials science 12(5–6) (2008) 63–72.CrossRefGoogle Scholar
  5. 5.
    W. Wang, J. Han, X. Yang, M. Li, P. Wan, L. Tan, Y. Zhang, K. Yang, Novel biocompatible magnesium alloys design with nutrient alloying elements Si, Ca and Sr: Structure and properties characterization, Materials Science and Engineering: B 214 (2016) 26–36.CrossRefGoogle Scholar
  6. 6.
    S.C. Bondy, Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer’s disease and age-related neurodegeneration, Neurotoxicology 52 (2016) 222–229.CrossRefGoogle Scholar
  7. 7.
    Z. Wang, X. Wei, J. Yang, J. Suo, J. Chen, X. Liu, X. Zhao, Chronic exposure to aluminum and risk of Alzheimer’s disease: A meta-analysis, Neuroscience letters 610 (2016) 200–206.CrossRefGoogle Scholar
  8. 8.
    G. Pagano, F. Aliberti, M. Guida, R. Oral, A. Siciliano, M. Trifuoggi, F. Tommasi, Rare earth elements in human and animal health: state of art and research priorities, Environmental research 142 (2015) 215–220.CrossRefGoogle Scholar
  9. 9.
    E. Zhang, L. Yang, J. Xu, H. Chen, Microstructure, mechanical properties and bio-corrosion properties of Mg–Si (–Ca, Zn) alloy for biomedical application, Acta biomaterialia 6(5) (2010) 1756–1762.CrossRefGoogle Scholar
  10. 10.
    A. Gil-Santos, I. Marco, N. Moelans, N. Hort, O. Van der Biest, Microstructure and degradation performance of biodegradable Mg-Si-Sr implant alloys, Materials Science and Engineering: C 71 (2017) 25–34.CrossRefGoogle Scholar
  11. 11.
    E.M. Carlisle, Silicon as an essential trace element in ammal nutrition, Silicon biochemistry 703 (2008) 123.Google Scholar
  12. 12.
    L.F. Rodella, V. Bonazza, M. Labanca, C. Lonati, R. Rezzani, A review of the effects of dietary silicon intake on bone homeostasis and regeneration, The journal of nutrition, health & aging 18(9) (2014) 820–826.CrossRefGoogle Scholar
  13. 13.
    Y. Guangyin, L. Manping, D. Wenjiang, A. Inoue, Microstructure and mechanical properties of Mg–Zn–Si-based alloys, Materials Science and Engineering: A 357(1–2) (2003) 314–320.CrossRefGoogle Scholar
  14. 14.
    J. Zhang, Z. Fan, Y. Wang, B. Zhou, Microstructural development of Al–15wt.% Mg2Si in situ composite with mischmetal addition, Materials Science and Engineering: A 281(1–2) (2000) 104–112.CrossRefGoogle Scholar
  15. 15.
    G.F.S. Beer, E. Schmid Proc. Conf. Magnesium Alloys and their Applications. (1992), pp. 317–324.Google Scholar
  16. 16.
    Q. Jiang, H. Wang, Y. Wang, B. Ma, J. Wang, Modification of Mg2Si in Mg–Si alloys with yttrium, Materials Science and Engineering: A 392(1–2) (2005) 130–135.CrossRefGoogle Scholar
  17. 17.
    E. Guo, B. Ma, L. Wang, Modification of Mg2Si morphology in Mg–Si alloys with Bi, Journal of Materials Processing Technology 206(1–3) (2008) 161–166.CrossRefGoogle Scholar
  18. 18.
    A. Srinivasan, S. Ningshen, U.K. Mudali, U. Pillai, B. Pai, Influence of Si and Sb additions on the corrosion behavior of AZ91 magnesium alloy, Intermetallics 15(12) (2007) 1511–1517.CrossRefGoogle Scholar
  19. 19.
    M. Baoxia, W. Liping, G. Erjun, Modification Effect of Lanthanum on Primary Phase Mg2Si in Mg-Si Alloys, J.Chin. Rare Earth Soc. 26(1) (2008) 87.Google Scholar
  20. 20.
    A. Gil-Santos, N. Moelans, N. Hort, O. Van der Biest, Identification and description of intermetallic compounds in Mg–Si–Sr cast and heat-treated alloys, Journal of Alloys and Compounds 669 (2016) 123–133.CrossRefGoogle Scholar
  21. 21.
    J.J. Kim, D.H. Kim, K. Shin, N.J. Kim, Modification of Mg2Si morphology in squeeze cast Mg–Al–Zn–Si alloys by Ca or P addition, Scripta Materialia 41(3) (1999) 333–340.CrossRefGoogle Scholar
  22. 22.
    J. Zhang, Z. Fan, Y. Wang, B. Zhou, Effect of cooling rate on the microstructure of hypereutectic Al–Mg2Si alloys, Journal of materials science letters 19(20) (2000) 1825–1828.CrossRefGoogle Scholar
  23. 23.
    H.S. Jiang, M.Y. Zheng, X.G. Qiao, K. Wu, Q.Y. Peng, S.H. Yang, Y.H. Yuan, J.H. Luo, Microstructure and mechanical properties of WE43 magnesium alloy fabricated by direct-chill casting, Materials Science and Engineering: A 684 (2017) 158–164.CrossRefGoogle Scholar
  24. 24.
    M. Jahedi, B.A. McWilliams, F.R. Kellogg, I.J. Beyerlein, M. Knezevic, Rate and temperature dependent deformation behavior of as-cast WE43 magnesium-rare earth alloy manufactured by direct-chill casting, Materials Science and Engineering: A 712 (2018) 50–64.CrossRefGoogle Scholar
  25. 25.
    F.R. Elsayed, N. Hort, M.A. Salgado Ordorica, K.U. Kainer, Magnesium permanent mold castings optimization, Materials Science Forum, Trans Tech Publ, 2011, pp. 65–68.CrossRefGoogle Scholar
  26. 26.
    M. Salgado-Ordorica, W. Punessen, S. Yi, J. Bohlen, K.-U. Kainer, N. Hort, Macrostructure evolution in directionally solidified Mg-RE alloys, Magnesium Technology 2011, Springer2011, pp. 113–118.Google Scholar
  27. 27.
    T.B. Massalski, H. Okamoto, P. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams; ASM International Materials Park; 1990.Google Scholar
  28. 28.
    P. Mengucci, G. Barucca, G. Riontino, D. Lussana, M. Massazza, R. Ferragut, E.H. Aly, Structure evolution of a WE43 Mg alloy submitted to different thermal treatments, Materials Science and Engineering: A 479(1–2) (2008) 37–44.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Institute of Metal ResearchShenyangChina
  2. 2.Magnesium Innovation Centre (MagIC)Helmholtz-Zentrum GeesthachtGeesthachtGermany
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.School of Materials Science and EngineeringUniversity of Science and Technology of ChinaShenyangChina

Personalised recommendations