Effects of Li on Microstructures and Corrosion Behaviors of Mg–Li–Al Alloys

  • Yang Li
  • Tingchao Li
  • Qilong Wang
  • Yun ZouEmail author
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


The microstructures and corrosion behaviors of three Mg–Li–Al alloys are systemically investigated by changing the Li concentrations. The Al addition in the Mg–Li–Al alloys with different Li contents results in various intermetallic compounds: the AlLi formation in the Mg–3Li–6Al alloy as well as the AlLi and MgLiAl2 formation in the Mg–9Li–6Al and Mg–15Li–6Al alloys. The formation of AlLi and MgLiAl2 intermetallic compounds plays a significant role in the improvement of corrosion properties. The corrosion performance of the cast LA36, LA96, and LA156 samples can be ranked as LA96 > LA156 > LA36.


Mg–Li alloy Microstructure Corrosion-resistance properties 



This work was supported by the National Science Foundation of China (51705470, 51801185), Key Research Project of the Higher Education Institutions of Henan Province, Henan Provincial Department of Education, China (18A460032, 19A460007), and Special Research and Promotion Project of Henan Province, China (182102210009).


  1. 1.
    Z.K. Qu, L.B. Wu, R.Z. Wu, J.H. Zhang, M.L. Zhang, B. Liu, Microstructures and tensile properties of hot extruded Mg–5Li–3Al–2Zn–xRE(Rare Earths) alloys, Mater. Des. 54 (2014) 792–795.CrossRefGoogle Scholar
  2. 2.
    D.K. Xu, T.T. Zu, M. Yin, Y.B. Xu, E.H. Han, Mechanical properties of the icosahedral phase reinforced duplex Mg–Li alloy both at room and elevated temperatures, J. Alloy. Compd. 582 (2014) 161–166.CrossRefGoogle Scholar
  3. 3.
    R.Z. Wu, Y.D. Yan, G.X. Wang, L.E. Murr, W. Han, Z.W. Zhang, M.L. Zhang, Recent progress in magnesium-lithium alloys, Int. Mater. Rev. 60 (2015) 65–100.CrossRefGoogle Scholar
  4. 4.
    I. Shin, E.A. Carter, First-principles simulations of plasticity in body-centered-cubic magnesium-lithium alloys, Acta Mater. 64 (2014) 198–207.CrossRefGoogle Scholar
  5. 5.
    W.A. Counts, M. Friak, D. Raabe, J. Neugebauer, Using ab initio calculations in designing bcc Mg–Li alloys for ultra-lightweight applications, Acta Mater. 57 (2009) 69–76.CrossRefGoogle Scholar
  6. 6.
    V. Kumar, Govind, R. Shekhar, R. Balasubramaniam, K. Balani, Microstructure evolution and texture development in thermomechanically processed Mg–Li–Al based alloys, Mater. Sci. Eng. A 547 (2012) 38–50.CrossRefGoogle Scholar
  7. 7.
    T.L. Zhu, J.F. Sun, C.L. Cui, R.Z. Wu, S. Betsofen, Z. Leng, J.H. Zhang, M.L. Zhang, Influence of Y and Nd on microstructure, texture and anisotropy of Mg–5Li–1A1 alloy, Mater. Sci. Eng. A 600 (2014) 1–7.CrossRefGoogle Scholar
  8. 8.
    T.B. Massalski (Ed.), Binary Alloy Phase Diagrams, ASM, Metals Park, OH, 1986.Google Scholar
  9. 9.
    M.C. Zhao, M. Liu, G. Song, A. Atrens, Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91, Corros. Sci. 50 (2008) 1939–1953.CrossRefGoogle Scholar
  10. 10.
    R. Ambat, N.N. Aung, W. Zhou, Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy, Corros. Sci. 42 (2000) 1433–1455.CrossRefGoogle Scholar
  11. 11.
    T. Zhang, Y. Li, F. Wang, Roles of β phase in the corrosion process of AZ91D magnesium alloy, Corros. Sci. 48 (2006) 1249–1264.CrossRefGoogle Scholar
  12. 12.
    G.L. Song, A.L. Bowles, D.H. StJohn, Corrosion resistance of aged die cast magnesium alloy AZ91D, Mater. Sci. Eng. A 366 (2004) 74–86.CrossRefGoogle Scholar
  13. 13.
    G.L. Song, A. Atrens, X. Wu, B. Zhang, Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride, Corros. Sci. 40 (1998) 1769–1791.CrossRefGoogle Scholar
  14. 14.
    G.L. Song, A. Atrens, M. Dargusch, Influence of microstructure on the corrosion of diecast AZ91D, Corros. Sci. 41 (1998) 249–273.CrossRefGoogle Scholar
  15. 15.
    M. Sahoo, J. Atkinson, Magnesium-lithium-alloys—constitution and fabrication for use in batteries, J. Mater. Sci. 17 (1982) 3564–3574.CrossRefGoogle Scholar
  16. 16.
    M.C. Lin, C.Y. Tsai, J.Y. Uan, Electrochemical behaviour and corrosion performance of Mg–Li–Al-Zn anodes with high Al composition, Corros. Sci. 51 (2009) 2463–2472.CrossRefGoogle Scholar
  17. 17.
    Yun Zou, Lehao Zhang, Yang Li, Hongtao Wang, Jiabin Liu, Peter K. Liaw, Hongbin Bei, Zhongwu Zhang, Improvement of mechanical behaviors of a superlight Mg–Li base alloy by duplex phases and fine precipitates, Journal of Alloys and Compounds 735 (2018) 2625–2633.CrossRefGoogle Scholar
  18. 18.
    R.S. Busk, Lattice parameters of magnesium alloys, Trans. Aime 188 (1950) 1460–1464.CrossRefGoogle Scholar
  19. 19.
    L.W.F. Mackenzie, M. Pekguleryuz, The influences of alloying additions and processing parameters on the rolling microstructures and textures of magnesium alloys, Mater. Sci. Eng. A 480 (2008) 189–197.CrossRefGoogle Scholar
  20. 20.
    B. Jiang, C.H. Zhang, T. Wang, Z.K. Qu, R.Z. Wu, M.L. Zhang, Creep behaviors of Mg–5Li–3Al–(0, 1) Ca alloys, Mater. Des. 34 (2012) 863–866.Google Scholar
  21. 21.
    Y. Song, D. Shan, R. Chen, E.H. Han, Corrosion characterization of Mg–8Li alloy in NaCl solution, Corros. Sci. 51 (2009) 1087–1094.CrossRefGoogle Scholar
  22. 22.
    H.P. Liu, N. Li, S.F. Bi, D.Y. Li, Z.L. Zou, Effect of organic additives on the corrosion resistance properties of electroless nickel deposits, Thin Solid Films 516 (2008) 1883–1889.CrossRefGoogle Scholar
  23. 23.
    Y. Zou, Z.W. Zhang, S.Y. Liu, D. Chen, G.X. Wang, Y.Y. Wang, M.L. Zhang, Y.H. Chen, Ultrasonic-Assisted Electroless Ni-P Plating on Dual Phase Mg–Li Alloy, J. Electrochem. Soc. 162 (2015) C64-C70.CrossRefGoogle Scholar
  24. 24.
    H. Haferkamp, F.W. Bach, P. Bohling, P. Juchmann. Production, processing and properties of lithium-containing Mg-alloys, in: G.W. Lorimer (Ed.), Proceedings of the Third International Magnesium Conference, Institute of Materials, London, UK, 1997, pp. 177–192.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringZhengzhou UniversityZhengzhouPeople’s Republic of China

Personalised recommendations