Effects of Sn on Microstructures and Mechanical Properties of As-Extruded Mg−6Al−1Ca−0.5Mn Magnesium Alloy

  • Huajie WuEmail author
  • Ruizhi Wu
  • Daqing Fang
  • Yuesheng Chai
  • Chao Liang
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


Effects of Sn on microstructures and mechanical properties of Mg–6Al–Ca–0.5Mn magnesium alloy were investigated. With Sn addition, the grain size of Mg–6Al–Ca–0.5Mn–xSn alloy decreases and the volume fraction of Mg2Sn phase increases. The minimum average grain size of Mg–6Al–Ca–0.5Mn–xSn alloy is 15 μm. The distribution of the phase is more dispersive in the Mg matrix. Sn content plays a key role for the inhibition of β-Mg17Al12 phase and the promotion of Mg2Sn phase. However, excessive Sn addition results in the decline of strength and elongation. Tensile results show that the Mg–6Al–Ca–0.5Mn–3Sn alloy exhibits the best mechanical properties, and the ultimate tensile strength, yield strength and elongation of the alloy are 335.9 MPa, 261.1 MPa and 10.9%, respectively. The improved tensile properties are mainly related to grain refinement, solid solution strengthening of Sn and precipitation strengthening of Mg2Sn phase. Fractographic analysis demonstrates that quasi-cleavage fracture is the dominant mechanism of these alloys.


Sn Mg–6Al–1Ca–0.5Mn magnesium alloy Microstructures Mechanical property 


  1. 1.
    Chen YA, Jin L, Song Y (2014) Materials Science & Engineering A 612:96–101Google Scholar
  2. 2.
    Huang ZH, Qi WJ (2015) Trans. Nonferrous Met. Soc. China 25:22–29Google Scholar
  3. 3.
    Wang JL, Yang J (2008) Materials Science and Engineering A 472:332–337CrossRefGoogle Scholar
  4. 4.
    Kondori B (2010) Materials Science and Engineering A 527:2014–2021CrossRefGoogle Scholar
  5. 5.
    Yang MB, Pan FS (2010) Materials and Design 31:68–75Google Scholar
  6. 6.
    Du WW, Sun YS, Min XG, Xue F, Zhu M (2003) Mater. Sci. Eng. A 356:1–7Google Scholar
  7. 7.
    Park SS, Bae GT, Kang DH, Jung IH, Kim NJ (2007) Scripta Mater. 57:793–796Google Scholar
  8. 8.
    Zheng J, Wang QD (2010) Materials Science and Engineering A 527:1677–1685CrossRefGoogle Scholar
  9. 9.
    Polmear IJ, Light Alloys (2006) Fourth ed., Elsevier Butterworth-HeinemannGoogle Scholar
  10. 10.
    Von Buch F, Lietzau J, Mordike B (1999) Mater. Sci. Eng. A 263:1–7Google Scholar
  11. 11.
    Gröbner J, Schmid-Fetzer R (2001) J. Alloy. Compd. 320:296–301Google Scholar
  12. 12.
    Xu TC, Peng XD (2014) Trans. Nonferrous Met. Soc. China 24:2752–2760Google Scholar
  13. 13.
    Celikin M, Kaya AA, Gauvin R, Pekguleryuz M (2012) Scr. Mater. 66:737–740Google Scholar
  14. 14.
    Celikin M, Kaya AA (2012) Mater. Sci. Eng. A–Struct. 534:129–141Google Scholar
  15. 15.
    Zhang DF, Qi FG, Lan W (2011) Trans. Nonferrous Met. Soc. China 21:703–710Google Scholar
  16. 16.
    Celikin M, Pekguleryuz M (2012) Mater. Sci. Eng. A 549:168–175Google Scholar
  17. 17.
    Yang MB, Guo TZ (2012) Materials Science and Engineering A 545:201–208CrossRefGoogle Scholar
  18. 18.
    Wei JY, Chen JH, Yan HG (2013) Journal of Alloys and Compounds 548:52–59CrossRefGoogle Scholar
  19. 19.
    Pan HC, Qin GW (2015) Journal of Alloys and Compounds 630:272–276CrossRefGoogle Scholar
  20. 20.
    Li SS, Tang B, Zeng DB (2007) Journal of Alloys and Compounds 437:317–321CrossRefGoogle Scholar
  21. 21.
    Li RG, Xu Y, Qi W, An J (2008) Materials Characterization 59:1643–1649CrossRefGoogle Scholar
  22. 22.
    Elsayed FR, Sasaki TT, Mendis CL (2013) Mater. Sci. Eng. A. 566:22–29Google Scholar
  23. 23.
    Elsayed FR, Sasaki TT, Ohkubo T (2013) Mater. Sci. Eng. A. 588:318–328Google Scholar
  24. 24.
    Yang MB, Qin CY (2011) Trans. Nonferrous Met. Soc. China 21:2168–2174Google Scholar
  25. 25.
    Nayyeri G (2010) Materials Science and Engineering A. 527:669–678Google Scholar
  26. 26.
    Nayyeri G (2011) Materials Science and Engineering A. 527:4613–4618Google Scholar
  27. 27.
    Mahmudi R, Moeendarbari S (2013) Mater. Sci. Eng. A. 566:30–39Google Scholar
  28. 28.
    Chen JH, Chen ZH (2008) Journal of Alloys and Compounds 461:209–215CrossRefGoogle Scholar
  29. 29.
    Hu GX (2006) Fundamentals of Materials Science[M]. ShanghaiGoogle Scholar
  30. 30.
    Cui ZQ (2000) Metallography & Heat Treatment[M]. China Machine PressGoogle Scholar
  31. 31.
    Dai YN (2009) Atlas of Binary Alloy Phase[M]. Beijing: Science PressGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Huajie Wu
    • 1
    • 2
    Email author
  • Ruizhi Wu
    • 1
  • Daqing Fang
    • 2
  • Yuesheng Chai
    • 2
  • Chao Liang
    • 2
  1. 1.Key Laboratory of Superlight Materials & Surface Technology, Ministry of EducationHarbin Engineering UniversityHarbinPeople’s Republic of China
  2. 2.College of Materials Science and EngineeringTaiyuan University of Science and TechnologyTaiyuanChina

Personalised recommendations