Radiation Effects in Polymeric Materials pp 193-242 | Cite as
Swift Heavy Ion Irradiation Effects on the Properties of Conducting Polymer Nanostructures
Abstract
This chapter presents the basic concepts of conducting or π-conjugated polymers and their different nanostructures and physico-chemical properties, which ushered in a new era of functional organic materials with potential applications. Most importantly, they can replace the traditional metallic conductors owing to their excellent properties of high conductivity, thermal stability, light weight, low corrosion, high flexibility, ease of synthesis and low cost. The first studied conducting polymer was polyacetylene, and in the last two decades, the most extensively studied conducting polymers are polyaniline (PAni), polypyrrole (PPy) and polythiophine (PTh) and their derivatives owing to their interesting physico-chemical properties. Irradiation on polymers with energetic heavy ions is used to tailor their different physico-chemical properties. The energetic heavy ion irradiation-induced modifications on various properties of polymers depends on various parameters viz. type of energy transferred (i.e., nuclear or electronic) to the target, species of ion and ion fluences. The ion-matter interaction with low energy (eV to keV) range causes implantation of the ions, while ions with high energy (keV to MeV) interaction cause irreversible structural modification along the cylindrical ion track, which is of the order of few nanometers in diameter. The fundamental aspects of ion-solid interaction, different related parameters and models governing the ion-solid interaction have been described in details in this chapter. PPy nanotubes, potential candidate of highly conducting π-conjugated polymers, have been chosen for irradiation at different ion fluences to enhance their structural, morphological, electrical, optical and thermal properties. Room temperature swift heavy ion (SHI) irradiation on thin PPy films (thickness ~30–35 µm) was investigated under high vacuum (~10−5 Torr) condition by 160 MeV Ni12+ SHI using various irradiation fluences such as 1010, 5 × 1010, 1011, 5 × 1011 and 1012 ions/cm2. High-resolution transmission electron microscopy (HRTEM) was used to investigate the morphological changes of SHI-irradiated PPy nanotubes. The irradiated nanotubes exhibit denser structure, and density is highest at 5 × 1011 ions/cm2 irradiation fluence. However, on irradiation with the highest ion fluence of 1012 ions/cm2, the density of irradiated PPy nanotubes is decreased. Up to the ion fluence of 5 × 1011 ions/cm2, reduction in optical band gap energy (Eg) of irradiated PPy nanotubes is observed; however, at the investigated highest irradiation fluence of 1012 ions/cm2, value of Eg is found to be higher as compared to the unirradiated PPy nanotubes. Micro-Raman studies exhibit that upon SHI irradiation up to the ion fluence of 5 × 1011 ions/cm2, the π-conjugation length and crystallinity of PPy nanotubes are increased. Thermogravimetric analysis (TGA) shows enhanced thermal stability of irradiated PPy nanotubes with increasing ion fluence, while thermal stability of PPy nanotubes decreases at the highest irradiation fluence. The current-voltage (I-V) characteristics for the irradiated PPy nanotubes get enhanced with increasing ion fluence, while their I-V characteristics decrease at the highest irradiation fluence of 1012 ions/cm2. The scaling of modulus spectra of irradiated PPy nanotubes at different irradiation fluences depicts irradiation fluence-independent relaxation dynamics of charge carriers. At the end of the chapter, the challenges in the field of ion-matter interaction in pre-/post-irradiation as well as the processing, characterization and application of the target materials have been discussed.
Keywords
Conducting polymer nanostructures Polypyrrole (PPy) nanotubes Ion-matter interaction Swift heavy ion irradiation Dielectric properties AC conductivityReferences
- 1.Ghosh M, Barman A, Das A et al (1998) J Appl Phys 83:4230CrossRefGoogle Scholar
- 2.Long YZ, Li MM, Gu C et al (2011) Prog Polym Sci 36:1415CrossRefGoogle Scholar
- 3.Lu Q (2010) Microchim Acta 168:205CrossRefGoogle Scholar
- 4.Gilmore KJ, Kita M, Han Y et al (2009) Biomaterials 30:5292PubMedCrossRefPubMedCentralGoogle Scholar
- 5.Guimard NK, Gomez N, Schmidt CE (2007) Prog Polym Sci 32:876CrossRefGoogle Scholar
- 6.Dey A, De SK (2007) J App Polym Sci 105:2225CrossRefGoogle Scholar
- 7.Dey A, De S, De A et al (2004) Nanotechnology 15:1277CrossRefGoogle Scholar
- 8.Pan L, Qiu H, Dou C et al (2010) Int J Mol Sci 11:2636PubMedPubMedCentralCrossRefGoogle Scholar
- 9.Breads JL, Silbey R (1991) Conjugated polymers. Kluwer Academic, Amsterdam, The NetherlandsCrossRefGoogle Scholar
- 10.Park JW, Lee C, Jang J (2015) Sens Actuators B 208:532CrossRefGoogle Scholar
- 11.Park JW, Park SJ, Kwon OS et al (2014) Anal Chem 86:1822PubMedCrossRefPubMedCentralGoogle Scholar
- 12.Martin CR (1995) Acc Chem Res 28:61CrossRefGoogle Scholar
- 13.Yang X, Zhu Z, Dai T et al (2005) Macromol Rapid Commun 26:1736CrossRefGoogle Scholar
- 14.Yanga X, Dai T, Zhu Z et al (2007) Polymer 48:4021CrossRefGoogle Scholar
- 15.Zhang L, Wan M (2003) Adv Funct Mater 13:815CrossRefGoogle Scholar
- 16.Zhang Z, Wei Z, Wan M (2002) Macromolecules 35:5937CrossRefGoogle Scholar
- 17.Wei Z, Zhang Z, Wan M (2002) Langmuir 18:917CrossRefGoogle Scholar
- 18.Yang Y, Liu J, Wan M (2002) Nanotechnology 13:771CrossRefGoogle Scholar
- 19.Huang K, Wan MX (2002) Chem Mater 14:3486CrossRefGoogle Scholar
- 20.Zhang Z, Wei Z, Zhang L et al (2005) Acta Mater 53:1373CrossRefGoogle Scholar
- 21.Zhang L, Peng H, Sui J et al (2008) J Curr Appl Phys 8:312CrossRefGoogle Scholar
- 22.Zhang L, Wan M (2002) Nanotechnology 13:750CrossRefGoogle Scholar
- 23.Fink D et al (2004) Nucl Instr Meth B 218:355CrossRefGoogle Scholar
- 24.Chapiro A (1988) Nucl Instr Meth B 32:111CrossRefGoogle Scholar
- 25.Rao V, Amara JV, Avasthi DK et al (2003) Radiat Measur 36:585CrossRefGoogle Scholar
- 26.Fleischer RL, Price PB, Walker RM (1975) Nuclear tracks in solids: principles and applications. University of Californiya, BerkeleyGoogle Scholar
- 27.Gervais B, Bouffard S (1994) Nucl Instr Meth B 88:355CrossRefGoogle Scholar
- 28.Schiwietz G, Czerski K, Roth M et al (2004) Nucl Instr Meth B 226:4CrossRefGoogle Scholar
- 29.Wang J, Mathar J, Trickey SB et al (1999) J Phys Condens Matter 11:3973–3986CrossRefGoogle Scholar
- 30.Juaristi J, Auth C, Winter H et al (2000) Phys Rev Lett 84:2124–2127PubMedCrossRefGoogle Scholar
- 31.Nazarov VU, Pitarke JM, Kim CS et al (2005) Phys Rev B 71:121106(R)CrossRefGoogle Scholar
- 32.Kanjilal D (2001) Curr Sci 80:1560–1566Google Scholar
- 33.Trautmann C, Klaumünzer S, Trinkaus H (2000) Phys Rev Lett 85:3648–3651PubMedCrossRefPubMedCentralGoogle Scholar
- 34.Krasheninnikov AV, Nordlund K (2010) J Appl Phy 107:071301CrossRefGoogle Scholar
- 35.Srivastava A, Singh V, Chandra A et al (2006) Nucl Instr Meth B 245:277–280CrossRefGoogle Scholar
- 36.Apel PY, Didyk AY, Fursov BI (1995) Nucl Instr Meth B 105:91–96CrossRefGoogle Scholar
- 37.Wang Y, Kang Y, Zaho W et al (1998) J Appl Phys 83:1341–1344CrossRefGoogle Scholar
- 38.Audouard A, Dural J, Toulemonde M et al (1996) Phys Rev B 54:15690–15694CrossRefGoogle Scholar
- 39.Toulemonde M (1999) Nucl Instrum Meth B 156:1–11CrossRefGoogle Scholar
- 40.Toulemonde M, Assmann W, Dufour C et al (2006) Mat Fys Med 5:263Google Scholar
- 41.Kaganov MI, Lifshitz IM, Tanatarov LV (1956) Zh Eksp Teor Fiz 31:232Google Scholar
- 42.Waligorski MPR, Hawn RN, Katz R (1986) Nucl Track Radiat Meas 11:309–319CrossRefGoogle Scholar
- 43.Szenes G (2011) Nucl Instrum Meth B 269:174–179CrossRefGoogle Scholar
- 44.Szenes G (1995) Phys Rev B 51:8026–8029CrossRefGoogle Scholar
- 45.Szenes G (1999) Phys Rev B 60:3140–3147CrossRefGoogle Scholar
- 46.Szenes G, Horvath ZE, Pecz B et al (2002) Phys Rev B 65:045206CrossRefGoogle Scholar
- 47.Toulemonde M, Dufour C, Meftah A et al (2000) Nucl Instrum Meth B 166–167:903–912CrossRefGoogle Scholar
- 48.Dunlop A, Lesueur D, Legrand P et al (1994) Nucl Instr Meth B 90:330–338CrossRefGoogle Scholar
- 49.Fleischer RL, Price PB, Walker RM (1965) J Appl Phys 36:3645–3652CrossRefGoogle Scholar
- 50.Bringa EM, Johnson RE (2002) Phys Rev Lett 88:165501PubMedCrossRefPubMedCentralGoogle Scholar
- 51.Calcagno L, Foti G (1991) Nucl Instr Meth B 59/60:1153CrossRefGoogle Scholar
- 52.Bridwell LB, Giedd RE, Wang YQ et al (1991) Nucl Instr Meth B 56/57:656CrossRefGoogle Scholar
- 53.Calcagno L, Compagnini G, Foti G (1992) Nucl Instr Meth B 65:413CrossRefGoogle Scholar
- 54.Gupta S, Choudhary D, Sarma A (2000) J Polym Sci Part B Polym Phys 38:1589CrossRefGoogle Scholar
- 55.Fink D, Keltt R, Chadderton LT et al (1996) Nucl Instr Meth B 111:303CrossRefGoogle Scholar
- 56.Venkatesan T, Calcagno L, Elman BS et al (eds) (1987) Ion beam modification of insulators. Elsevier, Amsterdam, p 301Google Scholar
- 57.Marletta G, Iacona F (1995) In: Pauleau Y (ed) Materials and processes for surface and interface engineering. Kluwer Academic Dordrecht, The Netherlands, p 597Google Scholar
- 58.Ziegler JF (1992) In: Ziegler JF (ed) Handbook of ion implantation technology. North-Holland, Amsterdam, pp 1–68Google Scholar
- 59.Lee EH, Rao GR, Lewis MB et al (1994) J Mater Res 9:1043CrossRefGoogle Scholar
- 60.Chapiro A (1962) Radiation chemistry of polymeric systems. Interscience Publishers, London, p 354Google Scholar
- 61.Bartok J, Hall BO, Schock KF (1986) J Appl Phys 59:1111CrossRefGoogle Scholar
- 62.Puglisi O (1989) Mater Sci Eng B 2:167CrossRefGoogle Scholar
- 63.Choi SC, Han S, Choi WK et al (1999) Nucl Instr Meth B 152:291CrossRefGoogle Scholar
- 64.Zhang Y, Huan ACH, Tan KL et al (2000) Nucl Instr Meth B 168:29CrossRefGoogle Scholar
- 65.Ruck DM (2000) Nucl Instr Meth B 166–167:602CrossRefGoogle Scholar
- 66.Paula H, Sánchez-Parcerisa D (2013) Nucl Instr Meth B 312:110CrossRefGoogle Scholar
- 67.Kucheyev SO (2004) J Appl Phys 95:5360CrossRefGoogle Scholar
- 68.Singh L, Singh R (2004) Nucl Instr Meth B 225:478CrossRefGoogle Scholar
- 69.Srivastava A, Singh V, Dhand C et al (2006) Sensors 6:262–269CrossRefGoogle Scholar
- 70.Kumar A, Banerjee S, Saikia JP et al (2010) Nanotechnology 21:175102PubMedCrossRefPubMedCentralGoogle Scholar
- 71.Calcagno L, Compagnini G, Foti G (1992) Phys Rev B 46:10573CrossRefGoogle Scholar
- 72.Forrest SR, Kaplan ML, Schmidt PH et al (1982) Appl Phys Lett 41:708CrossRefGoogle Scholar
- 73.Kaur A, Dhillon A, Avasthi DK (2009) J Appl Phys 106:0737151CrossRefGoogle Scholar
- 74.Kumar V, Ali Y, Sharma K et al (2014) Nucl Instrum Meth B 323:7CrossRefGoogle Scholar
- 75.Ramola RC, Chandra S, Rana JMS et al (2008) J Phys D Appl Phys 41:115411CrossRefGoogle Scholar
- 76.Chandra S, Annapoorni, Sonkawade RG et al (2009) Indian J Phys 83:943CrossRefGoogle Scholar
- 77.Hussain AMP, Kumar A, Singh F et al (2006) J Phys D 39:750CrossRefGoogle Scholar
- 78.Ramola RC, Alqudami A, Chandra S et al (2008) Radiat Eff Def Solids 163:139CrossRefGoogle Scholar
- 79.Kaur A, Dhillon A, Avasthi DK (2009) J Appl Phys 106:73715CrossRefGoogle Scholar
- 80.Chandra S, Annapoorni S, Singh F et al (2010) J Appl Polym Sci 115:2502CrossRefGoogle Scholar
- 81.LeMoel A, Durand JP, Lecomte C et al (1988) Nucl Instrum Meth B 32:115CrossRefGoogle Scholar
- 82.Licciardello A, Puglisi O, Calcagno L et al (1989) Nucl Instrum Meth B 39:769CrossRefGoogle Scholar
- 83.Xu D, Xii XL, Du GD et al (1993) Phys Stat Sol (a) 136:433CrossRefGoogle Scholar
- 84.Marletta G, Pignataro S, Oliveri C (1989) Nucl Instrum Meth B 39:773CrossRefGoogle Scholar
- 85.Fink D, Klett R (1995) Braz J Phys 25:54Google Scholar
- 86.Fink D, Alegaonkar PS, Petrov AV et al (2003) Radiat Meas 36:605CrossRefGoogle Scholar
- 87.Zhdanov GS, Bogacheva AV, Milinchuk VK et al (2000) Fourth international symposium on ionizing radiation and polymers, 24–28 Sept 2000Google Scholar
- 88.Smolyanskii AS, Zvezdina OS, Plotnikov VG (2000) Abstract submitted to the fourth international symposium on ionizing radiation and polymers, 24–28 Sept 2000Google Scholar
- 89.Ferain E, Legras R (1997) Nucl Instrum Meth B 131:97CrossRefGoogle Scholar
- 90.Pasternak CA, Alder GM, Apel PY et al (1995) Nucl Instrum Meth B 105:332CrossRefGoogle Scholar
- 91.Popok VN, Karpovich IA, Odzhaev VB (1999) Nucl Instrum Meth B 148:1106CrossRefGoogle Scholar
- 92.Ogiso H, Ishida T, Mizutani W et al (1999) Nucl Instrum Meth B 148:1097CrossRefGoogle Scholar
- 93.Chen J, Klaumünzer S, Lux-Steiner MC et al (2004) Appl Phys Lett 85:1401CrossRefGoogle Scholar
- 94.Berdinsky AS, Shevtsov YV, Okotrub AV et al (2000) Chem Sustain Dev 8:141Google Scholar
- 95.Kanjilal D, Chopra S, Narayanan MM et al (1993) Nucl Instrum Meth A 328:97CrossRefGoogle Scholar
- 96.Kim BJ, Oh SG, Han MG (2001) Synth Met 122:297CrossRefGoogle Scholar
- 97.Kim BJ, Oh SG, Han MG (2000) Langmuir 16:5841CrossRefGoogle Scholar
- 98.Harada M, Adachi M (2000) Adv Mater 12:839CrossRefGoogle Scholar
- 99.Mallick P, Rath C, Prakash J et al (2010) Nucl Instrum Meth B 268:1613CrossRefGoogle Scholar
- 100.Sharma T, Aggarwal S, Sharma A et al (2007) J Appl Phys 102:063527CrossRefGoogle Scholar
- 101.Copeland LE, Bragg RH (1958) Anal Chem 30:196CrossRefGoogle Scholar
- 102.Omastova M, Trchova M, Kovarova J et al (2003) Synth Met 138:447CrossRefGoogle Scholar
- 103.Gade VK, Shirale DJ, Gaikwad PD et al (2007) Int J Polym Mater 56:107CrossRefGoogle Scholar
- 104.Rizk RAM, Abdul-Kader AM, Ali ZI et al (2009) Vacuum 83:805CrossRefGoogle Scholar
- 105.Compagnini G, Foti G, Reitano R et al (1990) Appl Phys Lett 57:2546CrossRefGoogle Scholar
- 106.Rizk RAM, Abdul-Kader AM, Ali M et al (2008) Phys D Appl Phys 41:205304CrossRefGoogle Scholar
- 107.Virk HS, Chandi PS, Srivastava AK (2001) Nucl Instrum Meth B 183:329CrossRefGoogle Scholar
- 108.Fink D, Klett R, Chadderton LT et al (1996) Nucl Instrum Meth B 111:303CrossRefGoogle Scholar
- 109.Crowley K, Cassidy J (2003) J Electroanal Chem 547:75CrossRefGoogle Scholar
- 110.Gongcalves AB, Mangrich AS, Zarbin AJG (2000) Synth Met 114:119CrossRefGoogle Scholar
- 111.Liu Y, Hwang BJ, Jian W et al (2000) Thin Solid Films 374:85CrossRefGoogle Scholar
- 112.Zarbin AJG, De-Paoli MA, Alves OL (1999) Synth Met 99:227CrossRefGoogle Scholar
- 113.Bazzaoui EA, Levi G, Aeiyach S et al (1995) J Phys Chem 99:6628CrossRefGoogle Scholar
- 114.Xu J, Shi G, Xu Z et al (2001) J Electroanal Chem 514:16CrossRefGoogle Scholar
- 115.Ali Y, Sonkawade RG, Dhaliwal AS (2013) Nucl Instrum Meth B 316:42CrossRefGoogle Scholar
- 116.Sidebottom DL (1999) Phys Rev Lett 82:3653CrossRefGoogle Scholar
- 117.Rao S, Murali Krishna K, Madhava Prasad P et al (2008) J Alloys Compd 464:497CrossRefGoogle Scholar
- 118.Havriliak S, Negami S (1967) Polymer 8:161CrossRefGoogle Scholar
- 119.Neagu RM, Neagu N, Bonanes N et al (2000) J Appl Phys 88:6669CrossRefGoogle Scholar
- 120.Ghosh S, Ghosh A (2003) J Chem Phys 119:9106CrossRefGoogle Scholar
- 121.Qureshi A, Singh NL, Shah S et al (2008) J Macromol Sci Pure Appl Chem 45:265CrossRefGoogle Scholar
- 122.Saha S, Sinha TP (2002) Phys Rev B 75:069901CrossRefGoogle Scholar
- 123.Kohlrausch R (1847) Prog Ann 12:393Google Scholar
- 124.Migahed MD, Bakr NA, Abdel-Hamid MI et al (1996) J Appl Polym Sci 59:655CrossRefGoogle Scholar
- 125.Williams G, Watts DC (1970) Trans Faraday Soc 66:80CrossRefGoogle Scholar
- 126.Dietmar F, Chadderton LT (2005) Radiat Eff Def Solids 160:67CrossRefGoogle Scholar