Radiation Effects in Polymeric Materials pp 141-192 | Cite as
Radiation-Induced Effects on the Properties of Polymer-Metal Nanocomposites
Abstract
This chapter primarily includes the fundamental concepts related to metal nanoparticles with their unique features followed by importance of incorporating them in polymer matrix and finally considering irradiation as a novel tool to tailor the properties of metal–polymer nanocomposites. These nanocomposites are one of the promising materials which have been used in a wide variety of applications ranging from biomedical to optical and electrical devices to aerospace applications. Ionizing irradiation technique is among the most promising strategies for synthesis as well as to amend the changes in composite material because of the advantage of irradiation process compared to conventional synthesis like chemical, vapour deposition, etc., the process is simple, clean and controlled, carried out without producing undesired oxidants products of reducing agents, avoids the addition of undesirable impurities and produces composites which are highly stable. Irradiation-induced effects on polymer-metal nanocomposites provide unique pathway to control and modify the structural, optical and electrical properties of composites basically required for various applications as per desire. Thus, utilizing irradiations as a novel tool, a systematic study has been done to tune the properties of polymer-metal nanocomposites. Induced changes on structural, optical, and electrical properties have been conferred in this chapter.
Keywords
Polymer Metal nanoparticles Nanocomposites Surface plasmon resonance Optical band gap Refractive index Antireflective coating UV blocking Structural propertiesReferences
- 1.Feynman RP (1960) Eng Sci 22–36Google Scholar
- 2.Drexler KE (2004) Bull Sci Technol Soc 24(1):21–27CrossRefGoogle Scholar
- 3.“Plenty of room” revisited (2009) Nat Nanotechnol 4:781Google Scholar
- 4.Azzoni CB, Di Martino D, Marchesi V, Messiga B, Riccardi MP (2005) Archaeometry 47(2):381–388CrossRefGoogle Scholar
- 5.Cox GA, Gillies KJS (1986) Archaeometry 28(1):57–68CrossRefGoogle Scholar
- 6.Cramp RJ (1975) J Glass Stud 17:88–96Google Scholar
- 7.Brugger J (2009) Nanotechnology 20(43):430206PubMedCrossRefPubMedCentralGoogle Scholar
- 8.Suri SS, Fenniri H, Singh B (2007) J Occup Med Toxicol 2:16PubMedPubMedCentralCrossRefGoogle Scholar
- 9.Solanki A, Kim JD, Lee KB (2008) Nanomedicine (Lond) 3(4):567–578CrossRefGoogle Scholar
- 10.Kim E-S, Ahn EH, Dvir T, Kim D-H (2014) Int J Nanomed 9:1–5CrossRefGoogle Scholar
- 11.Toy R, Bauer L, Hoimes C, Ghaghada KB, Karathanasis E (2014) Adv Drug Deliv Rev 0:79–97. https://doi.org/10.1016/j.addr.2014.08.002PubMedCrossRefGoogle Scholar
- 12.Chahal RP, Mahendia S, Tomar AK, Kumar S (2015) Appl Surf Sci 343:160–165CrossRefGoogle Scholar
- 13.Chahal RP, Mahendia S, Tomar AK, Kumar S (2012) J Alloys Comp 538:212–219CrossRefGoogle Scholar
- 14.Mahendia S, Tomar AK, Chahal RP, Goyal P, Kumar S (2011) J Phys D Appl Phys 44:205105CrossRefGoogle Scholar
- 15.Cao Z, Abe Y, Nagahama T, Tsuchiya K, Ogino K (2013) Polymer 54:269–276CrossRefGoogle Scholar
- 16.Xu P, Han X, Zhang B, Dua Y, Wang H (2014) Chem Soc Rev 43:1349–1360PubMedCrossRefGoogle Scholar
- 17.Nicolais L, Carotenuto G (2005) Metal-polymer nanocomposites. Wiley, Hoboken, New JerseyGoogle Scholar
- 18.Yeum YH, Deng Y (2005) Colloid Polym Sci 283:1172–1179CrossRefGoogle Scholar
- 19.Biswas A, Avasthi DK, Fink D, Kanzow J, Schürmann U, Ding SJ, Aktas OC, Saeed U, Zaporojtchenko V, Faupel F, Gupta R, Kumar N (2004) Nucl Instr Meth B 217:39–50CrossRefGoogle Scholar
- 20.Qureshi A, Singh NL, Shah S, Kulriya P, Singh F, Avasthi DK (2008) Nucl Instr Meth B 266:1775–1779CrossRefGoogle Scholar
- 21.Abd El-Kader KAM, Hamied SFA (2002) J Appl Polym Sci 86:1219–1226CrossRefGoogle Scholar
- 22.Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chem Rev 105:1025PubMedCrossRefPubMedCentralGoogle Scholar
- 23.Praharaj S, Nath S, Ghosh S, Kundu S, Pal T (2004) Langmuir 20:9889PubMedCrossRefPubMedCentralGoogle Scholar
- 24.Campbell CT, Parker SC, Starr DE (2002) Science 298:811PubMedCrossRefPubMedCentralGoogle Scholar
- 25.Frederix F, Friedt J, Choi K, Laureyn W, Campitelli A, Mondelaers D, Maes G, Borghs G (2003) Anal Chem 75:6894PubMedCrossRefPubMedCentralGoogle Scholar
- 26.Folarin OM, Sadiku ER, Maity A (2011) Inter J Phys Sci 6(21):4869–4882Google Scholar
- 27.Murray CB, Norris DJ, Bawendi MG (1993) J Am Chem Soc 115:8706–8715CrossRefGoogle Scholar
- 28.Klabunde KJ (2001) Nanoscale materials in chemistry. Wiley-Interscience, New YorkCrossRefGoogle Scholar
- 29.Whitesides GM, Love JC (2001) Sci Am 285:38PubMedCrossRefPubMedCentralGoogle Scholar
- 30.Schmid G (2004) Nanoparticles: from theory to application. Wiley-VCH, WeinheimGoogle Scholar
- 31.Uskoković V (2013) J Biomed Nanotechnol 9(9):1441–1470PubMedPubMedCentralCrossRefGoogle Scholar
- 32.Fritz G, Schädler V, Willenbacher N, Wagner NJ (2002) Langmuir 18:6381–6390CrossRefGoogle Scholar
- 33.Corbierre MK, Cameron NS, Mark S, Laaziri K, Lennox RB (2005) Langmuir 21:6063PubMedCrossRefGoogle Scholar
- 34.Naka K, Itoh H, Park S, Chujo Y (2004) Polymer Bull 52:171–176CrossRefGoogle Scholar
- 35.Balan L, Burget D (2006) Eur Polym J 42:3180–3189CrossRefGoogle Scholar
- 36.Lee JY, Liao Y, Nagahata R, Ahoriuchi S (2006) Polymer 47:7970–7979CrossRefGoogle Scholar
- 37.Sangermano M, Yagci Y, Rizza G (2007) Macromol 40:8827–8829CrossRefGoogle Scholar
- 38.Nadagouda MN, Varma RS (2007) Macromol Rapid Commun 28:465–472CrossRefGoogle Scholar
- 39.Kanbur Y, Irimia-V M, Głowacki ED, Voss G, Baumgartner M, Schwabegger G, Leonat L, Ullah M, Sarica H, Erten-Ela S, Schwodiauer R, Sitter H, Kucukyavuz Z, Bauer S, Sariciftc NS (2012) Org Electron 13:919PubMedPubMedCentralCrossRefGoogle Scholar
- 40.Yun Y, Pearson C, PettyMC (2009) J Appl Phys 105:034508Google Scholar
- 41.Choi JS (2008) J Inf Disp 9:35CrossRefGoogle Scholar
- 42.Feng L, Tang W, Xu X, Cui Q, Guo X (2013) IEEE Electron Device Lett 34:129CrossRefGoogle Scholar
- 43.Hadjichristov GBIL, Stefanov BI, Florian, Blaskova GD (2009) Appl Surf Sci 256:779–789CrossRefGoogle Scholar
- 44.Ram S, Gautam A, Fecht HJ, Cai J, Bansmann H, Behm RJ (2007) Philos Mag Lett 87:361CrossRefGoogle Scholar
- 45.Malik TG-A, Latif RM-A, Sawaby A, Ahmed SM (2008) J Appl Sci Res 4:331Google Scholar
- 46.Coiai S, Passaglia E, Pucci A, Ruggeri G (2015) Materials 8:3377–3427PubMedCentralCrossRefPubMedGoogle Scholar
- 47.Camargo PHC, Satyanarayana KG, Wypych F (2009) Mat Res 12(1):1–39CrossRefGoogle Scholar
- 48.Heilmann A (2010) Polymer films with embedded metal nanoparticles. Springer Series in Materials Science, Springer, BerlinGoogle Scholar
- 49.Kunckel J (1689) Ars Vitraria Experimentalis oder Vollkommene Glasmacherkunst, FrankfurtGoogle Scholar
- 50.Faraday M (1857) Phil Trans R Soc Lond 147:145–181CrossRefGoogle Scholar
- 51.Quinten M (2011) Optical properties of nanoparticle systems: mie and beyond. Wiley-VCH Verlag & Co., GermanyCrossRefGoogle Scholar
- 52.Steubing W (1908) Ann Phys (Leipzig) 26:329–371CrossRefGoogle Scholar
- 53.Keirbeg U, Vollmer M (1995) Optical properties of metal clusters (Springer Series in Material Science No 25). Springer, BerlinGoogle Scholar
- 54.Heilman A (2003) Polymer films with embedded metal nanoparticles. Springer, BerlinCrossRefGoogle Scholar
- 55.Schonauer D, Kreibig U (1985) Surf Sci 156:100–111CrossRefGoogle Scholar
- 56.Mie G (1908) Ann Phys (Leipzig) 25:377–445CrossRefGoogle Scholar
- 57.Henglein A (1989) Chem Rev 89:1861CrossRefGoogle Scholar
- 58.Liu Fu-K, Hsieh S-Y, Ko Fu-H, Chu T-C (2003) Colloids Surf A Physicochem Eng Aspects 231:31–38CrossRefGoogle Scholar
- 59.El-Sayed MA (2004) Acc Chem Res 37:326–333PubMedCrossRefGoogle Scholar
- 60.Li S, Lin MM, Toprak MS, Kim DK, Muhammed M (2010) Nano Rev 1:5214CrossRefGoogle Scholar
- 61.Lüdersdorff FW. Verh. Verein. Beförderung Gewerbefleiss. 1833 Preussen 12:224Google Scholar
- 62.Garnett JCM (1904) Philos Trans R Soc London 203:385–420CrossRefGoogle Scholar
- 63.Caseri W (2000) Macromol Rapid Comm 21:705–722CrossRefGoogle Scholar
- 64.Maier SA, Kik PG, Atwater HA, Sheffer M, Harel E, Koel BE, Requicha AAG (2003) Nat Mater 2:229PubMedCrossRefPubMedCentralGoogle Scholar
- 65.Lu J, Moon K-S, Xu J, Wong CP (2006) J Mater Chem 16:1543CrossRefGoogle Scholar
- 66.Xia Y, Halas XJ (2005) MRS Bull 30:338CrossRefGoogle Scholar
- 67.Srivastava S, Haridas M, Basu JK (2008) Bull Mater Sci 31:213CrossRefGoogle Scholar
- 68.Li S, Lin MM, Toprak MS, Kim KD, Muhammed M (2010) Nano Rev 1:5214CrossRefGoogle Scholar
- 69.Qiu K, Netravali AN (2013) Polym Compos 34:799–809CrossRefGoogle Scholar
- 70.Razzak MT, Darwis D, Zainuddin S (2001) Radiat Phys Chem 62:107–113CrossRefGoogle Scholar
- 71.Demerlis CC, Schoneker DR (2003) Food Chem Toxicol 41:319–326PubMedCrossRefGoogle Scholar
- 72.Chiellini E, Corti A, D’Antone S, Solaro R (2003) Prog Polym Sci 28:963–1014CrossRefGoogle Scholar
- 73.Solaro R, Corti A, Chiellini E (2000) Polym Adv Technol 11:873–878CrossRefGoogle Scholar
- 74.Devi CU, Sharma AK, Rao VVRN (2002) Mater Lett 56:167CrossRefGoogle Scholar
- 75.Khanna PK, Singh N, Charan S, Subbarao VVVS, Gokhale R, Mulik UP (2005) J Mater Chem Phys 93:117CrossRefGoogle Scholar
- 76.Perelaer J, Hendriks C, de Laat AWM, Schubert US (2009) Nanotechnology 20:165303PubMedCrossRefGoogle Scholar
- 77.Rai M, Yadav A, Gade A (2009) Biotechnol Adv 27:76–83PubMedCrossRefGoogle Scholar
- 78.Toker RD, Kayaman-Apohan N, Kahraman MV (2013) Prog Org Coat 76:1243–1250CrossRefGoogle Scholar
- 79.Evans RD (1955) The atomic nucleus. Tata McGraw-Hill Publishing Company, New YorkGoogle Scholar
- 80.Chapiro A (1962) Radiation chemistry of polymeric systems. Wiley, UKGoogle Scholar
- 81.Leo WR (1994) Techniques for nuclear and particle physics experiments—a how-to approach. Springer, BerlinCrossRefGoogle Scholar
- 82.Sinha D, Phukan T, Tripathy SP, Mishra R, Dwivedi KK (2001) Radiat Meas 34:109–111CrossRefGoogle Scholar
- 83.Saad AF, Atwa ST, Yokota R, Fujii M (2005) Radiat Meas 40:780–784CrossRefGoogle Scholar
- 84.Fink D (ed) (2004) Fundamentals of ion-irradiated polymers. Springer, BerlinGoogle Scholar
- 85.Ritchie RH, Claussen C (1982) Nucl Instrum Methods B 198:133–138CrossRefGoogle Scholar
- 86.Fink D, Chadderton L (2005) Braz J Phys 35(3B):735–740CrossRefGoogle Scholar
- 87.Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in matter. Pergamon, New YorkCrossRefGoogle Scholar
- 88.Aumayr F, Winter HP (2005) Nucl Instrum Methods B 233:111CrossRefGoogle Scholar
- 89.Prakash J, Pivin JC, Swart H (2015) Adv Coll Interface Sci 226:187–202CrossRefGoogle Scholar
- 90.Kharisov BI, Kharissova OV, Mendez UO, Radiation synthesis of materials and compounds. ISBN 9781466505223 - CAT# K14554, pp 11–18Google Scholar
- 91.Fujita H, Izawa M, Yamazaki H (1962) Nature 196:666–667CrossRefGoogle Scholar
- 92.Marignier JL, Belloni J, Delcourt M, Chevalier JP (1985) Nature 317:344–345CrossRefGoogle Scholar
- 93.Henglein A (1989) Chem Rev 89:1861–1873CrossRefGoogle Scholar
- 94.Belloni J, Amblard J, Marignier JL, Mostafavi M (1994) Cluster atoms and molecules. In: Haberland H (ed), vol 2. Springer, BerlinGoogle Scholar
- 95.Belloni J, Mostafavi M, Remita H, Marignier JL, Delcourt MO (1998) New J Chem 22:1239–1255CrossRefGoogle Scholar
- 96.Drobny JG (2003) Radiation technology for polymers. CRC Press LLCGoogle Scholar
- 97.Choi SH, Lee K-P, Park S-B (2003) Study Surf Catal 146:93CrossRefGoogle Scholar
- 98.Choi S-H, Choi MS, KP Lee, Kang HD (2004) J Appl Polym Sci 91(4):2335Google Scholar
- 99.Kang Y-O, Choi S-H, Gopalan A, Lee K-P, Kang H-D (2006) Song YS 352:463–468Google Scholar
- 100.Rao YN, Banerjee D, Datta A, Das SK, Guin R, Saha A (2010) Radiat Phy Chem 79:1240–1246CrossRefGoogle Scholar
- 101.Ali Y, Kumar V, Sonkawade RG, Dhaliwal AS, Swart HC (2014) Vacuum 99:265–271CrossRefGoogle Scholar
- 102.Kim S, Jeong J-O, Lee S, Park J-S, Gwon H-J, Jeong SI, Hardy JG, Lim Y-M, Lee JY (2018) Sci Rep 8:3721PubMedPubMedCentralCrossRefGoogle Scholar
- 103.Atif M, Bongiovanni R, Yang J (2015) Polym Rev 55:90–106Google Scholar
- 104.Oldring PKT (ed) (1991) Chemistry and technology of UV and EB formulation for coatings, inks and paints. SITA Techn, London, Vols 1È5Google Scholar
- 105.Ravijst JP (1990) Proc Rad Tech Conf 1: 278 (Chicago)Google Scholar
- 106.Decker C (1998) Polym Int 45:133–141CrossRefGoogle Scholar
- 107.Pappas SP (ed) (1992) Radiation curing science and technology. Plenum Press, New YorkGoogle Scholar
- 108.Balan L, Burget D (2006) Euro Poly J 42(12):3180–3189CrossRefGoogle Scholar
- 109.Lu Y, Mei Y, Schrinner M, Ballauff M, Möller MW, Breu J (2007) J Phys Chem C 111(21):7676–7681CrossRefGoogle Scholar
- 110.Shameli K, Ahmad MB, Yunus WMZW, Rustaiyan A, Ibrahim NA, Zargar M, Abdollahi Y (2010) Intern J Nanomed 5:875CrossRefGoogle Scholar
- 111.Forrest SR, Kaplan ML, Schmidt PH, Venkatesan T, Lovinger AJ (1982) App Phy Lett 41:708. https://doi.org/10.1063/1.93642CrossRefGoogle Scholar
- 112.Hioki T, Noda S, Sugiura M, Kakeno M, Yamada K, Kawamoto J (1983) Appl Phys Lett 43:30CrossRefGoogle Scholar
- 113.Fink D, Moller M, Chadderton LT, Cannington PH, Elliman RG, Mcdonald DC (1988) Nucl Inst Meth Phys Res B 32:125–130CrossRefGoogle Scholar
- 114.Goyal PK, Kumar V, Gupta R, Mahendia S, Sharma T, Kumar S (2011) Adv App Sci Res 2(3):227–231Google Scholar
- 115.Kumar S, Kumar R, Singh DP (2009) App Surf Sci 255:8014–8018Google Scholar
- 116.Prakash J, Tripathi A, Rigato V, Pivin JC, Tripathi J, Chae KH, Gautam S, Kumar P, Asokan K, Avasthi DK (2011) J Phys D Appl Phys 44:125302CrossRefGoogle Scholar
- 117.Prakash J, Tripathi A, Laxmi GVBS, Rigato V, Tripathi J, Avasthi DK (2013) Adv Mat Lett 4(6):408–412CrossRefGoogle Scholar
- 118.Prakash J, Tripathi A, Khan SA, Kumar S, Singh F, Tripathi JK, Tripathi J (2011) Rad Eff Defs Sol 166(8):682–688CrossRefGoogle Scholar
- 119.Zaporojtchenko V, Zekonyte J, Wille S, Schuermann U, Faupel F (2005) Nucl Inst Meth B 236:95–102CrossRefGoogle Scholar
- 120.Wang L, Angert N, Trautmann C, Vetter J (1995) J. Adhes Sci Techn 9:1523–1529CrossRefGoogle Scholar
- 121.Zaprorjtchnko V, Zenkonyte J, Faupel F (2007) Nucl Inst Meth B 265:139–145CrossRefGoogle Scholar
- 122.Mishra YK, Chakravadhanula VSK, Schurmann U, Kumar H, Kabiraj D, Ghosh S, Zaporojtchenko V, Avasthi DK, Faupel F (2008) Nucl Inst Meth B 266:1804–1809CrossRefGoogle Scholar
- 123.Prakash J, Tripathi J, Khan SA, Pivin JC, Singh F, Tripathi J, Kumar S, Avasthi DK (2010) Vacuum 84(11):1275–1279CrossRefGoogle Scholar
- 124.Biswas A, Avasthi DK, Fink D, Kanzow J, Schurmann U, Ding SJ, Aktas OC, Saeed U, Zaporojtchenko V, Faupel F, Gupta R, Kumar N (2004) Nucl Inst Meth B 217:39–50CrossRefGoogle Scholar
- 125.Singh F, Mohapatra S, Stoquert JP, Avasthi DK, Pivin JC (2009). 267:936–940Google Scholar
- 126.Ali Y, Kumar V, Sonkawade RG, Dhaliwal AS (2013) Vacuum 90:59–64CrossRefGoogle Scholar
- 127.Singhal P, Rattan S (2016) J Phys Chem B 120(13):3403–3413PubMedCrossRefGoogle Scholar
- 128.Efimov AM (1995) Optical constants of inorganic glasses. CRC Press, USAGoogle Scholar
- 129.Bach H, Neuroth N (1995) The properties of optical glass. Springer, BerlinGoogle Scholar
- 130.Fox AM (2010) Optical properties of solids, 2nd edn. Oxford University Press, New YorkGoogle Scholar
- 131.Oreski G, Tscharnuter D, Wallner GM (2008) Macromol Symp 265:124CrossRefGoogle Scholar
- 132.Kumar V, Goyal PK, Mahendia S, Gupta R, Sharma T, Kumar S (2011) Rad Eff Def Solids 166:109CrossRefGoogle Scholar
- 133.Migahed MD, Zidan HM (2006) Current App Phys 6:91CrossRefGoogle Scholar
- 134.Tauc J, Grigorovivi R, Vancu A (1966) Stat Sol 15:627–637CrossRefGoogle Scholar
- 135.Tauc J (1974) Amorphous and liquid semiconductors. Plenum PressGoogle Scholar
- 136.Datta T, Woollam JA, Notohamiprodjo W (1989) Phy Rev B 40:5956–5960CrossRefGoogle Scholar
- 137.Mostafavi M, Delcourt MO, Picq G (1993) J Radiat Phys Chem 41:453CrossRefGoogle Scholar
- 138.Linnert T, Mulvaney P, Henglein A et al (1990) J Am Chem Soc 112:4657–4664CrossRefGoogle Scholar
- 139.Sudeep PK, Kamat PV (2005) Chem Mater 17:5404–5410CrossRefGoogle Scholar
- 140.Janata E, Henglein A, Ershovt BG (1994) J Phys Chem 98:10888–10890CrossRefGoogle Scholar
- 141.Overbeek JTG (1982) Adv Colloid Interface Sci 15:251–277CrossRefGoogle Scholar
- 142.Temgire MK, Joshi SS (2004) Rad Phys Chem 71:1039–1044CrossRefGoogle Scholar
- 143.Wu W, Wang Y, Shi L, Zhu Q, Pang W, Xu G, Lu F (2005) Nanotechnology 16:3017–3022CrossRefGoogle Scholar
- 144.Nho Y, Moon S et al (2005) J Ind Eng Chem 11:159–164Google Scholar
- 145.Ramya CS, Savitha T, Selvasekarapandian S, Hirankumar G (2005) Ionics 11:436CrossRefGoogle Scholar
- 146.Link S, El-sayed MA (1999) J Phys Chem B 103:8410–8426CrossRefGoogle Scholar
- 147.Kreibig U, Bour G, Hilger A, Gartz M (1999) Phys Stat Sol (a) 175:351–366CrossRefGoogle Scholar
- 148.Garcia MA (2011) J Phys D Appl Phys 44:283001CrossRefGoogle Scholar
- 149.Kumar G, Tripathi VK (2007) Appl Phys Lett 91:161503CrossRefGoogle Scholar
- 150.Huang HH, Ni XP, Loy GL, Chew CH, Tan KL, Loh FC, Deng JF, Xu GQ (1996) Langmuir 12:909–912CrossRefGoogle Scholar
- 151.Singh F, Mohanta S, Stoguert JP, Avasthi DK, Pivin JC (2009) Nucl Instr Meth Phys Res B 267:936–940CrossRefGoogle Scholar
- 152.Avasthi DK, Mehta GK (2011) Swift heavy ions for materials engineering and nanostructuring. Springer Series in Materials Science, BerlinCrossRefGoogle Scholar
- 153.Abargues R, Marques-Hueso J, Canet-Ferrer J, Pedrueza E, Valdes JL, Jimenez E, Martınez-Pastor JP (2008) Nanotechnology 19:355308PubMedCrossRefGoogle Scholar
- 154.Eisa WH, Abdel-Moneam YK, Shaaban Y, Abdel-Fattah AA, Zeid AMA (2011) Mater Chem Phys 128:109–113CrossRefGoogle Scholar
- 155.Sharma K, Chahal RP, Mahendia S, Tomar AK, Kumar S (2013) Rad Eff Def Solids 168(5):378–384CrossRefGoogle Scholar
- 156.Bhat NV, Nate MM, Kurup MB, Bambole VA, Sabharwal S (2005) Nucl Instrum Methods B 237:585–592CrossRefGoogle Scholar
- 157.Fink D et al (1995) Radiat Eff Def Solids 133:193–208CrossRefGoogle Scholar
- 158.Sellmeier W (1871) Ann Phys Chem 143:271Google Scholar
- 159.Wemple SH, DiDomenico M (1970) Phys Rev B 3:1338–1351CrossRefGoogle Scholar
- 160.Bhar O, Pinto JC (1991) J Appl Polym Sci 42:2795–2809CrossRefGoogle Scholar
- 161.Lorimer JW (1972) Polymer 13:2274–2276Google Scholar
- 162.Bhat NV, Nate MM, Kurup MB, Bambole VA, Sabharwal S (2005) Nucl Instrum Methods B 237:585–592CrossRefGoogle Scholar
- 163.Charis MNC et al (2011) J Appl Polym Sci 122:1572–1578Google Scholar
- 164.Kumar G, Singh DB, Tripathi VK (2006) J Phys D Appl Phys 39:4436–4439CrossRefGoogle Scholar
- 165.Gautam A, Ram S (2010) Mater Chem Phys 119:266–271CrossRefGoogle Scholar
- 166.Vij A, Singh S, Kumar R, Lochab SP, Kumar VVS, Singh N (2009) J Phys D Appl Phys 42:105103CrossRefGoogle Scholar
- 167.Finch CA (1973) Polyvinyl alcohol properties and application. Wiley, HobokenGoogle Scholar
- 168.Mbhele ZH et al (2003) Chem Mater 15:5019–5024CrossRefGoogle Scholar
- 169.Shah S, Singh NL, Gavade C, Shivakumar V, Sulania I, Tripathi A, Singh F, Avasthi DK, Upadhyay RV (2010) Integr Ferroelectr Int J 117:97–103CrossRefGoogle Scholar
- 170.Thomas PS, Stuart BH (1997) Spectro Chemica Acta: Part A 53:2275–2278CrossRefGoogle Scholar
- 171.Lin WC, Yang MC (2005) Macromol Rapid Commun 26:1942–1947CrossRefGoogle Scholar
- 172.Yu DG, Lin WC, Lin CH, Chang LM, Yang MC (2007) Mater Chem Phys 101:93–98CrossRefGoogle Scholar
- 173.Tripathi J, Keller JM, Das K, Tripathi S, Sripathi T (2012) J Phys Chem Solids 73:1026–1033CrossRefGoogle Scholar
- 174.Kumar CSSR (2012) Raman spectroscopy for nanomaterials characterization. Springer, BerlinCrossRefGoogle Scholar
- 175.Macleod HA (2001) Thin film optical filters, 3rd edn. Institute of Physics Publishing, Bristol and PhiladelphiaCrossRefGoogle Scholar
- 176.Liu Y, Guy OJ, Patel J, Ashraf H, Knight N (2013) Microelectron Eng 110:418–421CrossRefGoogle Scholar
- 177.Askar K, Phillips BM, Fang Y, Choi B, Gozubenli N, Jiang P, Jiang B (2013) Colloids Surf: A Physicochem Eng Aspects 439:84–100CrossRefGoogle Scholar
- 178.Jin KW, Cai S, Hua W, Da S, Xiu F, Jing L (2010) Chin Phys B 19:044210CrossRefGoogle Scholar
- 179.Chahal RP, Mahendia S, Tomar AK, Kumar S (2016) Opt Mater 52:237–241CrossRefGoogle Scholar