Advertisement

Plasma Irradiation of Polymers: Surface to Biological Mitigation

  • Narendra Kumar AgrawalEmail author
  • Neha Sharma
  • Tamanna Kumari Sharma
  • Priti Agarwal
  • Ravi Agarwal
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

Development in science and technology has made human life much simpler, but evolution and progress of time as well as increasing human demand have generated problems related to energy, health [1], etc. Progress in science and technology is trying to solve these issues to make the human life more comfortable. Growing requirement of biomedical devices, replacement of body parts after their failure, body implants [2, 3], bio-separation, sterilizations [4, 5], biosensors, etc. [6, 7], have shown need of development of advance smart materials (biomaterials). The choice of any material to be used as biomaterial/biomedical applications [8] depends on physical, chemical, surface, and biological properties, i.e., the presence of functional groups, surface free energy, hydrophilicity, surface morphology affects use of any material as biomaterial [9]. In other words, materials having high bio-adoptability and biocompatibility can only be used as biomaterials [10, 11]. Polymers arise as a suitable alternative of conventional biomaterial from last few decades, for synthesis of important biomaterials in modern manufacturing processes as they offer wide varieties of physical, chemical, biological, mechanical, and elastic properties with good processability. None of the normally available polymers possess surface and chemical properties required for many of biomedical applications. Nanomaterials and low-temperature plasma processing offer a novel route for surface and chemical modification in controlled manner without affecting their bulk properties [12]. Plasama processing can be utilized in various pathways to control the desired properties of modified materials, makes plasma so important that we can say “Plasma will future: Plasma for mankind.” Present work shows efficient and relevant route for synthesis of nanobiomaterials using nanotechnology and plasma processing to fabricate biomedical devices for biomedical applications [13].

Keywords

Plasma irradiation Polymers Biomaterials Biomedical applications 

References

  1. 1.
    Samberg ME, Oldenburg SJ, Monteiro-Riviere NA (2010) Environ Health Perspect 118:407–413PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Belgacem MN, Czeremuszkin G, Sapieha S, Gandini A (1995) Cellulose 2:145–157CrossRefGoogle Scholar
  3. 3.
    Helenius G, Backdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) J Biomed Mater Res Part A 76A:431–438CrossRefGoogle Scholar
  4. 4.
    Toole LO, Short RD (1997) J Chem Soc Faraday Trans 93:1141–1148CrossRefGoogle Scholar
  5. 5.
    Cagniant D, Magri P, Gruber R, Berlozecki S, Salbut PD, Bimer J (2002) J Anal Appl Pyrol 65:1–23CrossRefGoogle Scholar
  6. 6.
    Chua PK, Chena JY, Wanga LP, Huang N (2002) Mater Sci Eng R 36:143–206CrossRefGoogle Scholar
  7. 7.
    Yang J, Bei JZ, Wang SG (2002) Biomaterials 23:2607–2614PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Abraham JW, Kongsuwan N, Strunskus T, Faupel F, Bonitz M (2015) J Appl Phys 117:14305–14311CrossRefGoogle Scholar
  9. 9.
    Wang Y, Lu L, Zheng Y, Chen X (2006) J Biomed Mater Res Part A 76:589–595CrossRefGoogle Scholar
  10. 10.
    El-Bagory I, Barakat N, Ibrahim MA, El-Enazi F (2012) Saudi Pharm J 20:229–238PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Emeje M, John-Africa L, Isimi Y, Kunle O, Ofoefule S (2012) Acta Pharm 62:71–82PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Gancarz I, Pozniak G, Bryjak M (2000) Eur Polym J 36:1563–1569CrossRefGoogle Scholar
  13. 13.
    Alissawi N, Peter T, Strunskus T, Ebbert C, Grundmeier G, Faupel F (2013) J Nanopart Res 15:2080–2085CrossRefGoogle Scholar
  14. 14.
    Lutolf MP, Hubbell JA (2005) Nat Biotechnol 23:47–55PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Christine E, Jennie M (2005) Nat Biotechnol 23:47–55CrossRefGoogle Scholar
  16. 16.
    Madhav PN, Song P, Tae SB, Ho KY, Motohiro U, Fumio W, Lee MH (2011) J Mater Chem 21:12078–12082Google Scholar
  17. 17.
    Homaeigohar SS, Shokrgozar MA, Javadpour J, Khavandi A, Sadi AY (2006) J Biomed Mater Res A 78:129–138PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Huang HM, Hsieh SC, Teng NC, Feng SW, Ou KL, Chang WJ (2011) Med Biol Eng Comput 49:701–706PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Bartoš P, Špatenka P, Volfová L (2009) Plasma Processes Polym 6:5897–5903CrossRefGoogle Scholar
  20. 20.
    Bartoš P, Blažek J, Jelínek P, Špatenka P (2009) Eur Phys J D 54:223–319Google Scholar
  21. 21.
    Wan YQ, Yang J, Yang JL, Bei JZ, Wang SG (2003) Biomaterials 24:3757–3764PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Jaffe EA (1994) Biochemistry, immunology and cell biology of endothelium: In: Blood vessels in hemostasis and thrombosis. Lippincott Company, PhiladelphiaGoogle Scholar
  23. 23.
    Ji JH, Jung JH, Yu IJ, Kim SS (2007) Inhalation Toxicol 19:745–751CrossRefGoogle Scholar
  24. 24.
    Jung M, Vogel N, Koper I (2011) Langmuir 27:7008–7015PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Keledi G, Hari J, Pukanszky B (2012) Nanoscale 4:1919–1938PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Kim D, Lee JS, Barry CM, Mead JL (2007) Microsc Res Tech 70:539–546PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Vesel A, Junkar I, Cvelbar U, Kovac J, Mozetic M (2008) Surf Interface Anal 40:1444–1453CrossRefGoogle Scholar
  28. 28.
    Topalovic T, Nierstrasz VA, Bautista L, Jocic D, Navarro A, Warmoeskerken MMCG (2007) Colloids Surf A 296:76–85CrossRefGoogle Scholar
  29. 29.
    Oehr C (2003) Nucl Instrum Methods Phys Res Sect B 208:40–47CrossRefGoogle Scholar
  30. 30.
    Chua PK, Chen JY, Wang LP, Huang N (2002) Mater Sci Eng R 36:143–207Google Scholar
  31. 31.
    Bartoš P, Volfová L, Špatenka P (2009) Eur Phys J D 54:173–177CrossRefGoogle Scholar
  32. 32.
    Vijay YK, Acharya NK, Wate S, Avasthi DK (2003) Int J Hydrogen Energy 28:1015–1018CrossRefGoogle Scholar
  33. 33.
    Agrawal NK, Agarwal R, Vijay YK, Swami KC (2014) J Mater Sci Surf Eng 1:32–35Google Scholar
  34. 34.
    Agrawal NK, Awasthi K, Vijay YK, Swami KC (2013) J Adv Electrochem 1:98–104CrossRefGoogle Scholar
  35. 35.
    Dorranian D, Abedinia Z, Hojabria A, Ghoranneviss M (2009) J Non-Oxide Glasses 1:217–229Google Scholar
  36. 36.
    Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O (1993) J Polym Sci Part A Polym Chem 31:983–986CrossRefGoogle Scholar
  37. 37.
    Lee KM, Hu CW, Chen HW (2008) Sol Energy Mater Sol Cells 92:1628–1633CrossRefGoogle Scholar
  38. 38.
    Vijay YK, Dhayal M, Awasthi K, Kulshrestha V, Acharya NK, Choi JS (2006) J Biomed Nanotechnol 2:144–151CrossRefGoogle Scholar
  39. 39.
    Gomathi N, Mishra D, Maiti TK, Neogi S (2009) J Adhes Sci Technol 23:1861–1874CrossRefGoogle Scholar
  40. 40.
    Gomathi N, Neogi S (2009) J Adhes Sci Technol 23:1811–1826CrossRefGoogle Scholar
  41. 41.
    Sivak WN, Bliley JM, Marra KG (2014) Mol Biol 1162:139–148Google Scholar
  42. 42.
    Catapano G, Hornscheidt R, Wodetzki A, Baurmeister U (2004) J Membr Sci 230:131–135CrossRefGoogle Scholar
  43. 43.
    Ma Z, Mao Z, Gao C (2007) Colloids Surf B Biointerfaces 60:137–157PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Lucchesi C, Ferreira BMP, Duek EAR, Santos AR, Joazeiro PP (2008) J Mater Sci Mater Med 19:635–643PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Marega C, Causin V, Saini R, Marigo A, Meera AP, Thomas S, Devi KS (2012) J Phys Chem B 116:7596–7602PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Marzi D, Likos CN, Capone B (2012) J Chem Phys 137:014902PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Kumar GA, Agrawal NK, Khandelwal S, Agarwal R (2014) Int J Eng Res Technol 1:109–113Google Scholar
  48. 48.
    Agrawal NK, Agarwal R, Vijay YK, Swami KC (2014) Adv Sci Eng Med 6:698–703CrossRefGoogle Scholar
  49. 49.
    Zou L, Vidalis I, Steele D, Michelmore A, Low SP, Verberk JQ (2011) J Membr Sci 369:420–428CrossRefGoogle Scholar
  50. 50.
    Ball P (2002) Nanotechnology 13:15–28CrossRefGoogle Scholar
  51. 51.
    Trindade T, Brien PO, Pickett NL (2001) Chem Mater 13:3843–3858CrossRefGoogle Scholar
  52. 52.
    Rosenthal L, Strunskus T, Faupel F, Abraham JW, Bonitz M (2014) Opt Plasma Phys, 82:321–370Google Scholar
  53. 53.
    Chakravadhanula VSK, Mishra YK, Avashti DK, Strunskus T, Zaporojtchenko V, Fink S, Kienle L, Faupel F (2014) Beilstein J Nanotechnol 5:1419–1431PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Xiong J, Zubair Ghori M, Henkel B, Strunskus T, Schümann U, Kienle L, Faupel F (2014) Acta Mater 74:1–8Google Scholar
  55. 55.
    Matsuno R, Goto Y, Konno T, Takai M, Ishihara K (2009) J Nanosci Nanotechnol 9:358–365PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    McNeill CR, Watts B, Thomsen L, Belcher WJ, Greenham NC, Dastoor PC (2006) Nano Lett 6:1202–1206PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Plant Sci 179:154–163CrossRefGoogle Scholar
  58. 58.
    Hájková P, Špatenka P, Krumeich J, Exnar P, Kolouch A, Matoušek J (2009) Plasma Processes Polym 6:735–740CrossRefGoogle Scholar
  59. 59.
    Park KH, Dhayal M (2014) Electrochem Commun 49:47–50CrossRefGoogle Scholar
  60. 60.
    Agrawal NK, Singh M, Vijay YK, Swami KC (2014) Adv Sci Eng Med 6:595–602CrossRefGoogle Scholar
  61. 61.
    Carp O, Huisman CL, Reller A (2004) Prog Solid State Chem 32:133–177CrossRefGoogle Scholar
  62. 62.
    Sunada K, Watanabe T, Hashimoto K (2003) J Photochem Photobiol A Chem 156:227–233CrossRefGoogle Scholar
  63. 63.
    Bambhaniya KG, Grewal GS, Shrinet V, Govindan TP, Singh NL (2013) Chem Eng Commun 200Google Scholar
  64. 64.
    Regan OB, Gratzel M (1991) Nature 353:737–740CrossRefGoogle Scholar
  65. 65.
    Hájková P, Špatenka P, Krummeich J, Exnar P, Kolouch A, Matoušek J, Koci P (2009) Eur Phys J 54:189–193Google Scholar
  66. 66.
    Wang YQ, Zhang HM, Wang RH (2008) Colloids Surf B 65:190–196CrossRefGoogle Scholar
  67. 67.
    Park KH, Pandey RR, Dhayal M (2014) Sens Actuators B Chem 196:589–595CrossRefGoogle Scholar
  68. 68.
    Mohammadia MR, Fray DJ, Cordero-cabrera MC (2007) Sens Actuators B 124:74–83Google Scholar
  69. 69.
    Nowotny MK, Sheppard LR, Bak T, Nowotny J (2008) J Phys Chem C 112:5275–5300CrossRefGoogle Scholar
  70. 70.
    Thevenot P, Cho J, Wavhal D, Timmons RB, Tang L (2008) Nanomed Nanotechnol Biol Med 4:226–236CrossRefGoogle Scholar
  71. 71.
    Kuhn KP, Chaberny IF, Massholder K, Sticker M, Benz VW, Sonntag HG, Erdinger L (2003) Chemosphere 53:71–77PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Benabbou AK, Derriche Z, Felix C, Lejeune P, Guillard C (2007) Appl Catal B Environ 76:257–263CrossRefGoogle Scholar
  73. 73.
    Paul DR, Robeson LM (2008) Polym Nanocomposites Reson 49:3187–3204Google Scholar
  74. 74.
    Desireddy A, Conn BE, Guo J, Yoon B, Barnett RN, Monahan BM, Kirschbaum K, Griffith WP, Whetten RL, Landman U, Bigioni TP (2013) Nature 501:399–402PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Mel AD, Chaloupka K, Malam Y, Darbyshire A, Cousins B, Seifalian AM (2012) J Biomed Mater Res Part A 100A:2348–2357Google Scholar
  76. 76.
    Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Sci Direct 3:95–101Google Scholar
  77. 77.
    Sougata S, Jana AD, Samanta SK, Mostafa G (2007) Polyhedron 26:4419–4426CrossRefGoogle Scholar
  78. 78.
    Xiu Z, Zhang QB, Puppala HL, Colvin VL, Alvarez PJJ (2012) Nano Lett 12:4271–4275PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Farkasa J, Christian P, Urrea JAG, Roos N, Hassellöv M, Tollefsen KE, Thomas KV (2010) Aquat Toxicol 96:44–52Google Scholar
  80. 80.
    Guo W, Yuan J, Dong Q, Wang E (2010) J Am Chem Soc 132:932–934PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Keleştemur S, Kilic E, Uslu U, Cumbul A, Ugur M, Akman S, Culha M (2012) Nano Biomed Eng 4Google Scholar
  82. 82.
    Ebeling A, Hartmann V, Rockman A, Armstrong A, Balza R, Erbe J, Ebeling D (2013) Comput Water Energy Environ Eng 2:16–25CrossRefGoogle Scholar
  83. 83.
    Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S (2010) Adv Mater 22:2729–2742PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    David L, Moldovan B, Vulcu A, Olenic L, Perde-Schrepler M, Fischer-Fodor E, Florea A, Crisan M, Chiorean I, Clichici S, Filip GA (2014) Colloids Surf B Biointerfaces 122:767–777PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Shrivastava S, Bera T, Singh SK, Singh G, Ramachandrarao P, Dash D (2009) ACS Nano 3:1357–1364PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Erdem A (2007) Talanta 74:318–325PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Zhou YG, Rees NV, Compton RG (2011) Chem Phys Lett 511Google Scholar
  88. 88.
    Xuea CH, Chena J, Yina W, Jiaa ST, Maa JZ (2012) Appl Surf Sci 258:2468–2472CrossRefGoogle Scholar
  89. 89.
    Ouyang J, Chu CW, Szmanda CR, Ma L, Yang Y (2004) Nat Mater 3:918–922Google Scholar
  90. 90.
    Yu J, Patel SA, Dickson RM (2007) Angew Chem Int Ed Engl 46:2028–2030PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Paul DR, Robeson LM (2008) Polymer (Guildf) 49:3187–3204CrossRefGoogle Scholar
  92. 92.
    Fujii S, Matsuzawa S, Nakamura Y, Ohtaka A, Teratani T (2010) Langmuir 26:6230–6239PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Yuan Q, Misra RDK (2006) Mater Sci Technol 22:742–755CrossRefGoogle Scholar
  94. 94.
    Bhowmick AK, Bhattacharya M, Mitra S, Maji PK, Choudhury A, George JJ, Basak GC, Kumar KD, Kunststoffe KG (2010) Bio-Macromolecules 62:192–200Google Scholar
  95. 95.
    Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) J Compos Mater 40(17):1511–1575Google Scholar
  96. 96.
    Singh NB, Rai S, Agarwal S (2010) Nanosci Technol 1:10–13Google Scholar
  97. 97.
    Kumar A, Sharma SS, Nehra S, Srivastava S, Kulshrestha V, Singh M, Vijay YK (2010) Optoelectron Adv Mater Rapid Commun 4:1701–1704Google Scholar
  98. 98.
    Pereira CL, Demarco FF, Cenci MS, Osinaga PW, Piovesan EM (2003) Clin Oral Investig 7:116–119PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Knorowski CD, Anderson JA, Travesset A (2008) J Chem Phys 128:164903PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Fernandez-Saavedra R, Darder M, Gomez-Aviles A, Aranda P, Ruiz-Hitzky E (2008) J Nanosci Nanotechnol 8:1741–1750PubMedPubMedCentralGoogle Scholar
  101. 101.
    Gelves GA, Lin B, Sundararaj U, Haber JA (2008) Nanotechnology 19:215712PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Choi J, Choi MJ, Yoo JK, Park WI, Lee JH, Lee JY, Jung YS (2013) Nanoscale 5:7403–7409PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Gomez V, Levin M, Saber AT, Irusta S, Dal Maso M, Hanoi R, Santamaria J, Jensen KA, Wallin H, Koponen IK (2014) Ann Occup Hyg 58:983–994Google Scholar
  104. 104.
    Zakhary K, Ellis DA (2005) Facial Plast Surg 21:110–116PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Ko Y, Baek H, Kim Y, Yoon M, Cho J (2013) J ACS Nano 7:143–153CrossRefGoogle Scholar
  106. 106.
    Kumaravel R, Ramamurthi K, Sulania I, Asokan K, Kanjilal D, Avasthi DK (2012) Nucl Instrum Meth Phys Res B 285:61–64CrossRefGoogle Scholar
  107. 107.
    Mariam J, Sivakami S, Kothari DC, Dongre PM (2001) Protein J 33:258–266CrossRefGoogle Scholar
  108. 108.
    Bahrami R, Lobling TI, Groschel AH, Schmalz H, Muller AH, Altstadt V (2014) ACS Nano 8:10048–10056PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Ford C, Singh M, Lawson L, He J, John V, Lu Y, Papadopoulos K, McPherson G, Bose A (2004) Colloids Surf B Biointerfaces 39:143–150PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Ziegler A, Landfester K, Musyanovych A (2009) Colloid Polym Sci 287:1261–1271PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Kulshrestha V, Awasthi K, Acharya NK, Singh M, Avasthi DK, Vijay YK (2006) Desalination 195:273–277CrossRefGoogle Scholar
  112. 112.
    Timothy ND, Robert Slade CT, Varcoe JR (2004) J RSC ORG 15:1–10Google Scholar
  113. 113.
    Miyoshi T, Ishikawa H, Fujii M, Kuroda H (1984) Nihon Eiseigaku Zasshi 39:640–646PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Man SF, Thomson AB (1982) J Appl Physiol Respir Environ Exerc Physiol 52:1223–1229PubMedPubMedCentralGoogle Scholar
  115. 115.
    Okura M, Mykhaylyk OO, Ryan AJ (2013) Phys Rev Lett 110:087801PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Nakamura I (2014) J Phys Chem B 118:5787–5796PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Rechard FM, Robert D (2011) NanomaterialsGoogle Scholar
  118. 118.
    Sako Y, Kusumi A (1995) J Cell Biol 129:1559–1574PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Sanchis MR, Blanes V, Blanes M, Garcia D, Balart R (2006) Eur Polym J 42:1558–1568CrossRefGoogle Scholar
  120. 120.
    Sardella E, Liuzzi F, Comparelli R, Depalo N, Striccoli M, Agostiano A, Favia P, Curri ML (2013) Nanotech J 24:145302CrossRefGoogle Scholar
  121. 121.
    Scocchi G, Posocco P, Fermeglia M, Pricl S (2007) J Phys Chem B 111:2143–2151PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Kulshrestha V, Awasthi K, Acharya NK, Singh M, Vijay YK (2005) Bull Mater Sci 28:643–647CrossRefGoogle Scholar
  123. 123.
    Dhayal M, Awasthi K, Vijay YK, Avasthi DK (2006) Vacuum 80:643–647CrossRefGoogle Scholar
  124. 124.
    DeClements R, Swain GM, Dallas T, Herrick I, Stickney JL (1996) Langmuir 12:6578–6586CrossRefGoogle Scholar
  125. 125.
    Baylay H, Jayasinghe L (2004) Mol Membr Bio 21:209–213CrossRefGoogle Scholar
  126. 126.
    Blažek J, Bartoš P, Basner R, Kersten H, Špatenka P (2009) Eur Phys J D 54:219–224CrossRefGoogle Scholar
  127. 127.
    Bonitz M, Rosenthal L, Fujioka K, Zaporojtchenko V, Faupel F, Kersten H (2012) Contrib Plasma Phys 52:482–486CrossRefGoogle Scholar
  128. 128.
    Boris J, Thomas M, Klages CP, Faupel F, Zaporojtchenko V (2007) Plasma Processes Polym 482–486Google Scholar
  129. 129.
    McKay K, Salter T, Bowfield A, Walsh J, Gilmore I, Bradley JW (2014) J Am Soc Mass Spectrom 25:1528–1533PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Augustine BH, Hughes WC, Zimmermann KJ, Figueiredo AJ, Guo X, Chusuei CC, Maidment JS (2007) Langmuir 23:4346–4350PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Bowes M, Bradley JW (2014) J Phys D Appl Phys 47:265202–265207CrossRefGoogle Scholar
  132. 132.
    Bowfield A, Bunch J, Salter TL, Steven R, Gilmore IS, Barrett DA, Alexander MR, McKay K, Bradley JW (2014) Analyst 1–9Google Scholar
  133. 133.
    Cui X, Lee VA, Raphael Y, Wiler JA, Hetke JF, Anderson DJ, Martin DC (2001) J Biomed Mater Res 56:261–272PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Domingos M, Intranuovo F, Gloria A, Gristina R, Ambrosio L, Favia P, Bartolo P (2013) Acta Biomater 9:5997–5999PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Etrich C, Fahr S, Keshavarz Hedayati M, Faupel F, Elbahri M, Rockstuhl C (2014) Mater Sci Eng C Biomimetic 7:727–741Google Scholar
  136. 136.
    Agarwal R, Agrawal NK, Singh R (2014) Mater Focus 3:267–271CrossRefGoogle Scholar
  137. 137.
    Agrawal NK, Agarwal R, Awasthi K, Vijay YK, Swami KC (2014) Adv Mater Lett 5:645–651CrossRefGoogle Scholar
  138. 138.
    Eisenbrey JR, Hsu J, Wheatley MA (2009) Ultrasound Med Biol 35:1854–1862PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Kibayashi H, Teraoka F, Fujimoto S, Nakagawa M, Takahashi J (2005) Dent Mater J 24:53–58PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Sharma R, Das PP, Misra M, Mahajan V, Bock JP, Trigwell S, Biris AS, Mazumder MK (2009) Nanotechnology 20:075704PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Shinonaga Y, Arita K (2009) Dent Mater J 28:735–742PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Bazaka K, Jacob MV, Crawford RJ, Ivanova EP (2011) Acta Biomater 7:2015–2028PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Eloy R, Parrat D, Duc TM, Legeay G, Bechetoille A (1993) J Cataract Refract Surg 19:364–370PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Dufresne A (2010) Molecules 15:4111–4128PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Roy S, Sahoo NG, Mukherjee M, Das CK, Chan SH, Li L (2009) J Nanosci Nanotechnol 9:1928–1934PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Jacobs T, Declercq H, De Geyter N, Cornelissen R, Dubruel P, Leys C, Beaurain A, Payen E, Morent R (2013) J Mater Sci Mater Med 24:469–478PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Ren TB, Weigel T, Groth T, Lendlein A (2008) J Biomed Mater Res A 86:209–219PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Weikart CM, Miyama M, Yasuda HK (1999) J Colloid Interface Sci 211:28–38PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Lin M, Zhao Y, Wang S, Liu M, Duan Z, Chen Y, Li F, Xu F, Lu T (2012) Biotechnol Adv 30:1551–1561PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Song G, Cho SM, Jung HJ, Kim RH, Bae I, Ahn H, Ryu du Y, Huh J, Park C (2012) Chemistry 18:15662–15668Google Scholar
  151. 151.
    Szili EJ, Bradley JW, Short RD (2006) J Phys D Appl Phys 47(2014):152002–152015Google Scholar
  152. 152.
    Wang H, Chung TS, Tong YW, Jeyaseelan K, Armugam A, Duong HHP, Fu F, Seah H, Yang J, Hong M (2013) J Membr Sci 434:130–136CrossRefGoogle Scholar
  153. 153.
    Faupel F, Thran A, Zaporojtchenko V, Kiene M, Strunskus T, Behnke K (1999) AIP conference proceedings, 491–496, pp 201–216Google Scholar
  154. 154.
    Paosawatyanyong B, Kamlangkla K, Hodak SK (2010) J Nanosci Nanotechnol 10:7050–7054PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Selli E, Mazzone G, Oliva C, Martini F, Riccardi C, Barni R, Marcandalli B, Massafra MR (2001) J Mater Chem 11:1985–1991CrossRefGoogle Scholar
  156. 156.
    Ni HC, Lin ZY, Hsu SH, Chiu IM (2010) Acta Biomater 6:2066–2076PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Black J (2005) Biological performance of materials. CRE PressGoogle Scholar
  158. 158.
    Oehr OC (2003) Nucl Nucl Instr Meth Phys Res B 208:40–44Google Scholar
  159. 159.
    Lee H, Jung Y, Kim S (2012) J Nanosci Nanotechnol 12:1513–1516PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Wittenberg N, Son MM, Eves D, Cans AS, Ewing AG (2007) Electrochemistry at the cell membrane/solution interface. Electrochemical methods for neuroscience—NCBI bookshelf. CRC Press, USAGoogle Scholar
  161. 161.
    Sharma J, Yeh HC, Yoo H, Werner JH, Martinez JS (2011) Chem Commun (Camb) 47:2294–2296CrossRefGoogle Scholar
  162. 162.
    Favia P (2012) Surf Coat Technol 211Google Scholar
  163. 163.
    Gavade C, Kishore S, Singh NL, Khanna PK (2013) Radiat Eff Defects Solids 1Google Scholar
  164. 164.
    Khan SA, Srivastava SK, Avasthi DK (2012) J Phys D Appl Phys 45:375304–375310CrossRefGoogle Scholar
  165. 165.
    Rosenthal L, Strunskus T, Faupel F, Abraham JW, Bonitz M (2014) Springer Series on atomic, optical, and plasma physics. Complex Plasmas 82:321–370Google Scholar
  166. 166.
    Agrawal NK, Agarwal R, Vijay YK, Swami KC (2014) J Bionanoscience 8:108–115CrossRefGoogle Scholar
  167. 167.
    Balazs AC, Emrick T, Russell TP (2006) Science 314:1107–1110PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Cong H, Radosz M, Towler BF, Shen Y (2007) Sep Purif Technol 55:281–291CrossRefGoogle Scholar
  169. 169.
    Shahida N, Villateb RG, Barron AR (2005) Compos Sci Technol 65:2250–2258CrossRefGoogle Scholar
  170. 170.
    Siqueira G, Bras J, Dufresne A (2009) Biomacromolecules 10:425–432PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Dastjerdi R, Montazer M (2012) Colloids Surf B 79:5–18CrossRefGoogle Scholar
  172. 172.
    Ceschel GC, De Filippis P (1981) Pharm Acta Helv 56:291–295PubMedPubMedCentralGoogle Scholar
  173. 173.
    Chan TL, Wang CZ, Hupalo M, Tringides MC, Ho KM (2006) Phys Rev Lett 96:226102PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Chen B, Evans JR, Greenwell HC, Boulet P, Coveney PV, Bowden AA, Whiting A (2008) Chem Soc Rev 37:568–594PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Chen M, Zhang Y, Sky Driver M, Caruso AN, Yu Q, Wang Y (2013) Dent Mater 29:871–880Google Scholar
  176. 176.
    Choi JH, Kim YM, Park YW, Park TH, Jeong JW, Choi HJ, Song EH, Lee JW, Kim CH, Ju BK (2010) Nanotechnology 21:475203PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Colmenero J (2013) J Chem Phys 138:197101PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Teebken OE, Haverich A (2002) Eur J Vasc Endovasc Surg 23:475–485PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Sperling C, Salchert K, Streller U, Werner C (2004) Biomaterials 25:5101–5113PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Diquelou A, Dupouy D, Gaspin D, Constans J, Sié P, Boneu B, Sakariassen KS, Cadroy Y (1995) Thromb Haemost 74:778–780PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Zilla P, Greisler HP (1999) Tissue engineering of vascular prosthetic grafts. R.G. Landes Company, AustinGoogle Scholar
  182. 182.
    Bordenave L, Remy-Zolghadri M, Fernandez P, Bareille R, Midy D (1999) Endothelium 6:267–275PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Wendel HP, Ziemer G (1999) Eur J Cardio Thorac Surg 16:342–350CrossRefGoogle Scholar
  184. 184.
    Belboul A, Al-Khaja N (1997) Perfusion 12:385–391PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Schreurs HH, Wijers MJ, Gu YJ, Oeveren WV, Domburg RT, De Boer JH, Bogers AJ (1998) Ann Thorac Surg 66:166–171PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Ryu GH, Park SY, Cho HI, Min BG (1989) Seoul J Med 30:37–46Google Scholar
  187. 187.
    Faupel F, Willecke R, Thran A (1998) Mater Sci Eng R-Rep 22:1–55CrossRefGoogle Scholar
  188. 188.
    Faupel F, Willecke R, Thran A, Kiene M, Bechtolsheim C, Strunskus T (1997) Defect Diffus Forum 887:143–147Google Scholar
  189. 189.
    Faupel F, Zaporojtchenko V, Greve H, Schürmann U, Hanisch C, Chakravadhanula VSK, Kulkarni A, Gerber A, Quandt E, Podschun R (2007) Contrib Plasma Phys 47:537–544CrossRefGoogle Scholar
  190. 190.
    Zhang RR, Li L, Tong LL, Tang B (2013) Nanotechnology 24:015604PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Schwartz GA, Alegria A, Colmenero J (2007) J Chem Phys 127:154907PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Schwartz GA, Cangialosi D, Alegria A, Colmenero J (2006) J Chem Phys 124:154904PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Kedawat BK, Gupta P, Kumar J, Dwivedi A, Kumar NK, Agrawal SS, Kumar YK, Vijay ACS (2014) Appl Mater Interfaces 6:8407–8414Google Scholar
  194. 194.
    Favia P (2012) Surf Coat Tech 50:211–218Google Scholar
  195. 195.
    Günther-Schade K, Schubert DW, Faupel F (2002) Macromolecules 35:9074–9079CrossRefGoogle Scholar
  196. 196.
    Hedayati MK, Zillohu AU, Strunskus T, Faupel F, Elbahri M (2014) Appl Phys Lett 104:117–121CrossRefGoogle Scholar
  197. 197.
    Horakova M, Martin N, Aubry E, Spatenka P (2009) Catal Lett 132:244–249CrossRefGoogle Scholar
  198. 198.
    Klugkist P, Rätzke K, Rehders S, Troche P, Faupel F (1998) Phys Rev Lett 80:3288–3291CrossRefGoogle Scholar
  199. 199.
    Bagra B, Pimpliskar P, Agrawal NK (2014) AIP Conf Proc 1591:189–191CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Narendra Kumar Agrawal
    • 1
    Email author
  • Neha Sharma
    • 1
  • Tamanna Kumari Sharma
    • 1
  • Priti Agarwal
    • 2
  • Ravi Agarwal
    • 3
    • 4
  1. 1.Department of Physics, Poddar International College, Poddar Group of InstitutionsJaipurIndia
  2. 2.Rajasthan State Seed & Organic Production Certification AgencyJaipurIndia
  3. 3.Centre for Converging TechnologiesUniversity of RajasthanJaipurIndia
  4. 4.Department of PhysicsUniversity of RajasthanJaipurIndia

Personalised recommendations