Soft Probes for Bio-electrochemical Imaging pp 87-100 | Cite as
Imaging the Distribution of Graphene Oxide Nanoribbons in Mice Livers by Soft Probe SECM
Abstract
A broad range of carbonaceous nanomaterials, such as carbon nanotubes, graphene and graphene oxide, is currently discussed in literature for in vivo applications, such as photothermal therapy and drug delivery. This is due to the large variety of adjustable material properties including NIR absorbance or enhanced drug loading capacity, respectively. However, for biomedical applications the applied nanomaterials must fulfill certain requirements: (i) low toxicity (ii) rapid excretion, (iii) high solubility in the injection medium and in the body fluids, (iv) stability and biocompatibility under physiological conditions, (v) knowledge about the regions in the body where the nanomaterials will accumulate and (vi) low cost.
References
- 1.K. Yang, L. Feng, Z. Liu, Adv. Drug Deliv. Rev. 105, 228–241 (2016)CrossRefGoogle Scholar
- 2.Z. Liu, J.T. Robinson, X. Sun, H. Dai, J. Am. Chem. Soc. 130, 10876–10877 (2008)CrossRefGoogle Scholar
- 3.W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, H. Zhong, Biomaterials 32, 8555–8561 (2011)CrossRefGoogle Scholar
- 4.X. Yan, G. Niu, J. Lin, A.J. Jin, H. Hu, Y. Tang, Y. Zhang, A. Wu, J. Lu, S. Zhang et al., Biomaterials 42, 94–102 (2015)CrossRefGoogle Scholar
- 5.C. Liang, S. Diao, C. Wang, H. Gong, T. Liu, G. Hong, X. Shi, H. Dai, Z. Liu, Adv. Mater. 26, 5646–5652 (2014)CrossRefGoogle Scholar
- 6.A. Sahu, W. IlChoi, J.H. Lee, G. Tae, Biomaterials 34, 6239–6248 (2013)CrossRefGoogle Scholar
- 7.C.L. Sun, C.T. Chang, H.H. Lee, J. Zhou, J. Wang, T.K. Sham, W.F. Pong, ACS Nano 5, 7788–7795 (2011)CrossRefGoogle Scholar
- 8.X. Zhou, G. Lu, X. Qi, S. Wu, H. Li, F. Boey, H. Zhang, J. Phys. Chem. C 113, 19119–19122 (2009)CrossRefGoogle Scholar
- 9.A.L. Higginbotham, D.V. Kosynkin, A. Sinitskii, Z. Sun, J.M. Tour, ACS Nano 4, 2059–2069 (2010)CrossRefGoogle Scholar
- 10.Y. Zhu, D.K. James, J.M. Tour, Adv. Mater. 24, 4924–4955 (2012)CrossRefGoogle Scholar
- 11.Y.J. Lu, C.W. Lin, H.W. Yang, K.J. Lin, S.P. Wey, C.L. Sun, K.C. Wei, T.C. Yen, C.I. Lin, C.C.M. Ma et al., Carbon N. Y. 74, 83–95 (2014)CrossRefGoogle Scholar
- 12.D.A. Jasim, C. Ménard-Moyon, D. Bégin, A. Bianco, K. Kostarelos, J.J.A. Grácio, D. Dash, S. Goel, J. Bean, C.P. Theuer et al., Chem. Sci. 6, 3952–3964 (2015)CrossRefGoogle Scholar
- 13.C.J. Omiecinski, J.P. VandenHeuvel, G.H. Perdew, J.M. Peters, Toxicol. Sci. 120, S49–S75 (2011)CrossRefGoogle Scholar
- 14.T. Cresteil, Food Addit. Contam. 15, 45–51 (1998)CrossRefGoogle Scholar
- 15.B. Blumberg, W. Sabbagh, H. Juguilon, J. Bolado, C.M. VanMeter, E.S. Ong, R.M. Evans, Genes Dev. 12, 3195–3205 (1998)CrossRefGoogle Scholar
- 16.S. Mullick Chowdhury, G. Lalwani, K. Zhang, J.Y. Yang, K. Neville, B. Sitharaman, Biomaterials 34, 283–293 (2013)CrossRefGoogle Scholar
- 17.O. Akhavan, E. Ghaderi, H. Emamy, F. Akhavan, Carbon N. Y. 54, 419–431 (2013)CrossRefGoogle Scholar
- 18.S. Rapino, E. Treossi, V. Palermo, M. Marcaccio, F. Paolucci, F. Zerbetto, Chem. Commun. 50, 13117–13120 (2014)CrossRefGoogle Scholar
- 19.J. Azevedo, C. Bourdillon, V. Derycke, S. Campidelli, C. Lefrou, R. Cornut, Anal. Chem. 85, 1812–1818 (2013)CrossRefGoogle Scholar
- 20.T.-E. Lin, Y.-J. Lu, C.-L. Sun, J.-P. Chen, A. Lesch, H.H. Girault, Angew. Chem. Int. Ed. 56, 16498–16502 (2017)CrossRefGoogle Scholar
- 21.G. Eda, G. Fanchini, M. Chhowalla, Nat. Nanotechnol. 3, 270–274 (2008)CrossRefGoogle Scholar
- 22.M. Luthman, A. Holmgren, Biochemistry 21, 6628–6633 (1982)CrossRefGoogle Scholar
- 23.X. Li, A.J. Bard, J. Electroanal. Chem. 628, 35–42 (2009)CrossRefGoogle Scholar
- 24.T.-E. Lin, A. Bondarenko, A. Lesch, H. Pick, F. Cortés-Salazar, H.H. Girault, Angew. Chemie - Int. Ed. 55, 3813–3816 (2016)CrossRefGoogle Scholar
- 25.A.M. Rappaport, Z.J. Borowy, W.M. Lougheed, W.N. Lotto, Anat. Rec. 119, 11–33 (1954)CrossRefGoogle Scholar
- 26.M. Wachstein, E. Meisel, Am. J. Clin. Pathol. 27, 13–23 (1957)CrossRefGoogle Scholar