Advertisement

Reconfigurable Hardware Generation for Tensor Flow Models of CNN Algorithms on a Heterogeneous Acceleration Platform

  • Jiajun Gao
  • Yongxin Zhu
  • Meikang Qiu
  • Kuen Hung Tsoi
  • Xinyu Niu
  • Wayne Luk
  • Ruizhe Zhao
  • Zhiqiang Que
  • Wei Mao
  • Can Feng
  • Xiaowen Zha
  • Guobao Deng
  • Jiayi Chen
  • Tao Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11344)

Abstract

Convolutional Neural Networks (CNNs) have been used to improve the state-of-art in many fields such as object detection, image classification and segmentation. With their high computation and storage complexity, CNNs are good candidates for hardware acceleration with FPGA (Field Programmable Gate Array) technology. However, much FPGA design experience is needed to develop such hardware acceleration. This paper proposes a novel tool for design automation of FPGA-based CNN accelerator to reduce the development effort. Based on the Rainman hardware architecture and parameterized FPGA modules from Corerain Technology, we introduce a design tool to allow application developers to implement their specified CNN models into FPGA. Our tool supports model files generated by TensorFlow and produces the required control flow and data layout to simplify the procedure of mapping diverse CNN models into FPGA technology. A real-time face-detection design based on the SSD algorithm is adopted to evaluate the proposed approach. This design, using 16-bit quantization, can support up to 15 frames per second for 256*256*3 images, with power consumption of only 4.6 W.

Keywords

FPGA Framework CNNs Hardware acceleration 

Notes

Acknowledgment

This work is partially supported by National Key Research & Development Program of China (2017YFA0206104), Shanghai Municipal Science and Technology Commission and Commercial Aircraft Corporation of China, Ltd. (COMAC) (175111105000), Shanghai Municipal Science and Technology Commission (18511111302, 18511103502), Key Foreign Cooperation Projects of Bureau of International Co-operation Chinese Academy of Sciences (184131KYSB20160018) and Shenzhen Corerain Technologies Co. Ltd.

References

  1. 1.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  2. 2.
    Zhao, R., Niu, X., Wu, Y., Luk, W., Liu, Q.: Optimizing CNN-based object detection algorithms on embedded FPGA platforms. In: Wong, S., Beck, A.C., Bertels, K., Carro, L. (eds.) ARC 2017. LNCS, vol. 10216, pp. 255–267. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56258-2_22CrossRefGoogle Scholar
  3. 3.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, Alejandro F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  4. 4.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition - CVPR 2014, pp. 3431–3440 (2015)Google Scholar
  5. 5.
    Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46448-0_2CrossRefGoogle Scholar
  6. 6.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556v6 (2014)
  7. 7.
    Abdelouahab, K., et al.: Accelerating CNN inference on FPGAs: a survey (2018)Google Scholar
  8. 8.
    Lacey, G., Taylor, G.W., Areibi, S.: Deep learning on FPGAs: past, present, and future. arXiv e-print 2 (2016)Google Scholar
  9. 9.
    Sharma, H., et al.: From high-level deep neural models to FPGAs. In: 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Taipei, Taiwan, pp. 1–12 (2016)Google Scholar
  10. 10.
    Wang, Y., et al.: DeepBurning: automatic generation of FPGA-based learning accelerators for the neural network family. In: Design Automation Conference, pp. 1–16. IEEE (2016)Google Scholar
  11. 11.
    FDDB: A Benchmark for Face Detection in Unconstrained Settings. Technical Report UM-CS-2010-009, Deptartment of Computer Science, University of Massachusetts, Amherst (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jiajun Gao
    • 1
  • Yongxin Zhu
    • 1
    • 2
  • Meikang Qiu
    • 3
  • Kuen Hung Tsoi
    • 4
  • Xinyu Niu
    • 4
  • Wayne Luk
    • 5
  • Ruizhe Zhao
    • 5
  • Zhiqiang Que
    • 5
  • Wei Mao
    • 6
  • Can Feng
    • 6
  • Xiaowen Zha
    • 6
  • Guobao Deng
    • 6
  • Jiayi Chen
    • 6
  • Tao Liu
    • 6
  1. 1.School of MicroelectronicsShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Shanghai Advanced Research Institute, Chinese Academy of SciencesShanghaiChina
  3. 3.Harrisburg University of Science and TechnologyHarrisburgUSA
  4. 4.Shenzhen Corerain Technologies Co. Ltd.ShenzhenChina
  5. 5.Imperial College LondonLondonUK
  6. 6.The Commercial Aircraft Corporation of ChinaShanghaiChina

Personalised recommendations