Travel-Time Prediction Methods: A Review

  • Mengting Bai
  • Yangxin Lin
  • Meng MaEmail author
  • Ping WangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11344)


Near-future Travel-time information is helpful to implement Intelligent Transportation Systems (ITS). Travel-time prediction refers to predicting future travel-time. Researchers have developed various methods to predict travel-time in the past decades. This paper conducts a review focusing on literatures, including techniques proposed recently. These methods are categorized as model-based and data-driven methods. We elaborate two common model-based methods, namely queuing theory and cell transmission model. Data-driven methods are categorized as parametric models (linear regression, autoregressive integrated moving average model and Kalman filter) and non-parametric models (neural network, support vector regression, nearest neighbors and ensemble learning). These methods are compared from data, prediction range and accuracy. In addition, we discuss several solutions to overcome shortcomings of existing methods, and highlight significant future research challenges.


Travel-time prediction Model-based Data-driven Parametric Non-parametric 



This work is supported in part by National Key R&D Program of China No. 2017YFB1200700 and National Natural Science Foundation of China No. 61701007.


  1. 1.
    Figueiredo, L., Jesus, I., Machado, J.A.T., Ferreira, J.R.: Towards the development of intelligent transportation systems. In: 2001 Proceedings of Intelligent Transportation Systems, pp. 1206–1211 (2001)Google Scholar
  2. 2.
    Zhang, J., Wang, F.Y., Wang, K., Lin, W.H., Xu, X., Chen, C.: Data-driven intelligent transportation systems: a survey. IEEE Trans. Intell. Transp. Syst. 12, 1624–1639 (2011)CrossRefGoogle Scholar
  3. 3.
    Chen, H., Rakha, H.A.: Multi-step prediction of experienced travel times using agent-based modeling ☆. Transp. Res. Part C 71, 108–121 (2016)CrossRefGoogle Scholar
  4. 4.
    Takaba, S., Morita, T., Hada, T., Usami, T.: Estimation and measurement of travel time by vehicle detectors and license plate readers. In: Vehicle Navigation and Information Systems Conference, pp. 257–267 (1991)Google Scholar
  5. 5.
    Ben-Akiva, M., Bierlaire, M., Burton, D., Koutsopoulos, H.N., Mishalani, R.: Network state estimation and prediction for real-time traffic management. Netw. Spat. Econ. 1, 293–318 (2001)CrossRefGoogle Scholar
  6. 6.
    Skabardonis, A., Geroliminis, N.: Real-time estimation of travel times along signalized arterials. Transportation & Traffic Theory (2005)Google Scholar
  7. 7.
    Juri, N.R., Unnikrishnan, A., Waller, S.T.: Integrated traffic simulation-statistical analysis framework for online prediction of freeway travel time. Transp. Res. Rec. J. Transp. Res. Board 2039, 24–31 (2007)CrossRefGoogle Scholar
  8. 8.
    Wan, N., Gomes, G., Vahidi, A., Horowitz, R.: Prediction on travel-time distribution for freeways using online expectation maximization algorithm. In: Transportation Research Board 93rd Annual Meeting (2014)Google Scholar
  9. 9.
    Xiong, Z., Rey, D., Mao, T., Liu, H.: A three-stage framework for motorway travel time prediction. In: IEEE International Conference on Intelligent Transportation Systems, pp. 816–821 (2014)Google Scholar
  10. 10.
    Seybold, C.: Calibration of fundamental diagrams for travel time predictions based on the cell transmission model. VS Verlag für Sozialwissenschaften (2015)Google Scholar
  11. 11.
    Kwon, J., Coifman, B., Bickel, P.: Day-to-day travel time trends and travel time prediction from loop detector data. Transp. Res. Rec. J. Transp. Res. Board 1717, 1819–1825 (2000)CrossRefGoogle Scholar
  12. 12.
    Zhang, X., Rice, J.A.: Short-term travel time prediction ☆. Transp. Res. Part C 11, 187–210 (2003)CrossRefGoogle Scholar
  13. 13.
    Sun, H., Liu, H.X.: Short-term traffic forecasting using the local linear regression model. Center for Traffic Simulation Studies (2002)Google Scholar
  14. 14.
    Oda, T.: An algorithm for prediction of travel time using vehicle sensor data. In: International Conference on Road Traffic Control, pp. 40–44 (1990)Google Scholar
  15. 15.
    Zhicharevich, A., Margalit, Y.: Travel Time Prediction Problem RTA FreewayGoogle Scholar
  16. 16.
    Xia, J., Chen, M., Huang, W.: A multistep corridor travel-time prediction method using presence-type vehicle detector data. J. Intell. Transp. Syst. 15, 104–113 (2011)CrossRefGoogle Scholar
  17. 17.
    Sun, J., Zhang, C., Chen, S.K., Xue, R., Peng, Z.R.: Route travel time estimation based on seasonal model and Kalman filtering algorithm. J. Chang. Univ. 34, 145–151 (2014)Google Scholar
  18. 18.
    Chen, M., Chien, S.: Dynamic freeway travel-time prediction with probe vehicle data: link based versus path based. Transp. Res. Rec. J. Transp. Res. Board 1768, 157–161 (2001)CrossRefGoogle Scholar
  19. 19.
    Ji, H., Xu, A., Sui, X., Li, L.: The applied research of Kalman in the dynamic travel time prediction. In: International Conference on Geoinformatics, pp. 1–5 (2010)Google Scholar
  20. 20.
    Ojeda, L.L., Kibangou, A.Y., De Wit, C.C.: Online dynamic travel time prediction using speed and flow measurements. In: Control Conference, pp. 4045–4050 (2013)Google Scholar
  21. 21.
    Liu, X., Chien, S.I., Chen, M.: An adaptive model for highway travel time prediction. J. Adv. Transp. 48, 642–654 (2015)CrossRefGoogle Scholar
  22. 22.
    Park, D., Rilett, L.R.: Forecasting freeway link travel times with a multilayer feedforward neural network. Comput.-Aided Civ. Infrastruct. Eng. 14, 357–367 (2010)CrossRefGoogle Scholar
  23. 23.
    Wisitpongphan, N., Jitsakul, W., Jieamumporn, D.: Travel time prediction using multi-layer feed forward artificial neural network (2012)Google Scholar
  24. 24.
    Lint, J.W.C.V., Hoogendoorn, S.P., Zuylen, H.J.V.: Accurate freeway travel time prediction with state-space neural networks under missing data. Transp. Res. Part C 13, 347–369 (2005)CrossRefGoogle Scholar
  25. 25.
    Li, X., Wang, C., Shi, H.: A travel time prediction method: Bayesian reasoning state-space neural network. In: 2010 2nd International Conference on Information Science and Engineering (ICISE), pp. 936–940 (2010)Google Scholar
  26. 26.
    Yun, S.Y., Namkoong, S., Rho, J.-H., Shin, S.-W., Choi, J.-U.: A performance evaluation of neural network models in traffic volume forecasting. Math. Comput. Model. 27, 293–310 (1998)CrossRefGoogle Scholar
  27. 27.
    Ickes, W., et al.: Short Term Freeway Traffic Flow Prediction Using Genetically-Optimized Time-Delay-Based Neural Networks 7, 219–234 (1999)Google Scholar
  28. 28.
    Duan, Y., Lv, Y., Wang, F.Y.: Travel time prediction with LSTM neural network. In: IEEE International Conference on Intelligent Transportation Systems, pp. 1053–1058 (2016)Google Scholar
  29. 29.
    Liu, Y., Wang, Y., Yang, X., Zhang, L.: Short-term travel time prediction by deep learning: a comparison of different LSTM-DNN models. In: IEEE International Conference on Intelligent Transportation Systems, pp. 1–8 (2017)Google Scholar
  30. 30.
    Wu, C.H., Ho, J.M., Lee, D.T.: Travel-time prediction with support vector regression. IEEE Trans. Intell. Transp. Syst. 5, 276–281 (2004)CrossRefGoogle Scholar
  31. 31.
    Castro-Neto, M., Jeong, Y.S., Jeong, M.K., Han, L.D.: Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Syst. Appl. 36, 6164–6173 (2009)CrossRefGoogle Scholar
  32. 32.
    Gao, P., Hu, J., Zhou, H., Zhang, Y.: Travel time prediction with immune genetic algorithm and support vector regression. In: World Congress on Intelligent Control and Automation, pp. 987–992 (2016)Google Scholar
  33. 33.
    Lim, S., Lee, C.: Data fusion algorithm improves travel time predictions. IET Intell. Transp. Syst. 5, 302–309 (2011)CrossRefGoogle Scholar
  34. 34.
    Wang, J.Y., Wong, K.I., Chen, Y.Y.: Short-term travel time estimation and prediction for long freeway corridor using NN and regression. In: International IEEE Conference on Intelligent Transportation Systems, pp. 582–587 (2012)Google Scholar
  35. 35.
    Tak, S., Kim, S., Oh, S., Yeo, H.: Development of a data-driven framework for real-time travel time prediction. Comput.-Aided Civ. Infrastruct. Eng. 31, 777–793 (2016)CrossRefGoogle Scholar
  36. 36.
    Zhang, Y., Haghani, A.: A gradient boosting method to improve travel time prediction. Transp. Res. Part C 58, 308–324 (2015)CrossRefGoogle Scholar
  37. 37.
    Yu, B., Wang, H., Shan, W., Yao, B.: Prediction of bus travel time using random forests based on near neighbors. Comput.-Aided Civ. Infrastruct. Eng. 33, 333–350 (2017)CrossRefGoogle Scholar
  38. 38.
    Gupta, B., Awasthi, S., Gupta, R., Ram, L., Kumar, P., Rohit Prasad, B., Agarwal, S.: Taxi travel time prediction using ensemble-based random forest and gradient boosting model. In: Rajsingh, E.B., Veerasamy, J., Alavi, Amir H., Peter, J.Dinesh (eds.) Advances in Big Data and Cloud Computing. AISC, vol. 645, pp. 63–78. Springer, Singapore (2018). Scholar
  39. 39.
    Hamner, B.: Predicting travel times with context-dependent random forests by modeling local and aggregate traffic flow. In: IEEE International Conference on Data Mining Workshops, pp. 1357–1359 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Software and MicroelectronicsPeking UniversityBeijingChina
  2. 2.National Engineering Research Center for Software EngineeringPeking UniversityBeijingChina
  3. 3.Key Laboratory of High Confidence Software Technologies (PKU)Ministry of EducationBeijingChina

Personalised recommendations