The Accuracy of Fuzzy C-Means in Lower-Dimensional Space for Topic Detection

  • Hendri MurfiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11344)


Topic detection is an automatic method to discover topics in textual data. The standard methods of the topic detection are nonnegative matrix factorization (NMF) and latent Dirichlet allocation (LDA). Another alternative method is a clustering approach such as a k-means and fuzzy c-means (FCM). FCM extend the k-means method in the sense that the textual data may have more than one topic. However, FCM works well for low-dimensional textual data and fails for high-dimensional textual data. An approach to overcome the problem is transforming the textual data into lower dimensional space, i.e., Eigenspace, and called Eigenspace-based FCM (EFCM). Firstly, the textual data are transformed into an Eigenspace using truncated singular value decomposition. FCM is performed on the eigenspace data to identify the memberships of the textual data in clusters. Using these memberships, we generate topics from the high dimensional textual data in the original space. In this paper, we examine the accuracy of EFCM for topic detection. Our simulations show that EFCM results in the accuracies between the accuracies of LDA and NMF regarding both topic interpretation and topic recall.


Topic detection Clustering Fuzzy c-means Eigenspace Accuracy 



This work was supported by Universitas Indonesia under PDUPT 2018 grant. Any opinions, findings, and conclusions or recommendations are the authors’ and do not necessarily reflect those of the sponsor.


  1. 1.
    Lee, D.D., Seung, H.S.: Learning the parts of objects by nonnegative matrix factorization. Nature 401, 788–791 (1999)CrossRefGoogle Scholar
  2. 2.
    Cichocki, A., Phan, A.H.: Fast local algorithms for large scale nonnegative matrix and tensor factorizations. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E92–A, 708–721 (2009)CrossRefGoogle Scholar
  3. 3.
    Févotte, C., Idier, J.: Algorithms for nonnegative matrix factorization with the β-divergence. Neural Comput. 23, 2421–2456 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Blei, D.M., et al.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar
  5. 5.
    Hoffman, M.D., Blei, D.M., Wang, C., Paisley, J.: Stochastic variational inference. J. Mach. Learn. Res. 14, 1303–1347 (2013)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Hoffman, M.D., Blei, D.M., Bach, F.: Online learning for latent Dirichlet allocation. In: Proceedings of the 23rd International Conference on Neural Information Processing Systems, vol. 1, pp. 856–864. Curran Associates Inc., USA (2010)Google Scholar
  7. 7.
    Papadimitriou, C.H., Raghavan, P., Tamaki, H., Vempala, S.: Latent semantic indexing: a probabilistic analysis. In: Proceedings of the ACM Symposium on Principles of Database Systems, pp. 217–235 (1998)Google Scholar
  8. 8.
    Hofmann, T.: Probabilistic latent semantic analysis. In: Uncertainty in Artificial Intelligence, pp. 289–296 (1999)Google Scholar
  9. 9.
    Allan, J.: Topic Detection and Tracking: Event-Based Information Organization. Kluwer (2002)Google Scholar
  10. 10.
    Petkos, G., Papadopoulos, S., Kompatsiaris, Y.: Two-level message clustering for topic detection in Twitter. In: CEUR Workshop Proceedings, vol. 1150, pp. 49–56 (2014)Google Scholar
  11. 11.
    Nur’Aini, K., Najahaty, I., Hidayati, L., Murfi, H., Nurrohmah, S.: Combination of singular value decomposition and K-means clustering methods for topic detection on Twitter. In: 2015 International Conference on Advanced Computer Science and Information Systems, Proceedings, ICACSIS 2015 (2016)Google Scholar
  12. 12.
    Fitriyani, S.R., Murfi, H.: The K-means with mini batch algorithm for topics detection on online news. In: 2016 4th International Conference on Information and Communication Technology, ICoICT 2016 (2016)Google Scholar
  13. 13.
    Alatas, H., Murfi, H., Bustamam, A.: Topic detection using fuzzy c-means with nonnegative double singular value decomposition initialization. Int. J. Adv. Soft Comput. its Appl. 10, 206–222 (2018)Google Scholar
  14. 14.
    Mursidah, I., Murfi, H.: Analysis of initialization method on fuzzy c-means algorithm based on singular value decomposition for topic detection. In: Proceedings of the 2017 1st International Conference on Informatics and Computational Sciences (ICICoS), pp. 213–218 (2017)Google Scholar
  15. 15.
    Winkler, R., Klawonn, F., Kruse, R.: Fuzzy c-means in high dimensional spaces. Int. J. Fuzzy Syst. Appl. 1, 2–4 (2011)Google Scholar
  16. 16.
    Muliawati, T., Murfi, H.: Eigenspace-Based Fuzzy C-Means for Sensing Trending Topics in Twitter. In: AIP Conference Proceedings, vol. 1862, p. 030140 (2017)Google Scholar
  17. 17.
    Golub, G., Loan, C.V: Matrix Computation. The Johns Hopkins University Press (1996)Google Scholar
  18. 18.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1981)CrossRefGoogle Scholar
  19. 19.
    Bezdek, J.C., Hathaway, R.J.: Convergence of alternating optimization. Neural Parallel Sci. Comput. 11, 351–368 (2003)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Lau, J.H., Newman, D., Baldwin, T.: Machine reading tea leaves: automatically evaluating topic coherence and topic model quality. In: Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, pp. 530–539 (2014)Google Scholar
  21. 21.
    Lichman, M.: UCI Machine Learning Repository (2013).
  22. 22.
    Manning, C.D., Schuetze, H., Raghavan, P.: Introduction to information retrieval. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  23. 23.
    Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Aiello, L.M., et al.: Sensing trending topics in Twitter. IEEE Trans. Multimed. 15, 1268–1282 (2013)CrossRefGoogle Scholar
  25. 25.
    Sitorus, A.P., Murfi, H., Nurrohmah, S., Akbar, A.: Sensing trending topics in Twitter for Greater Jakarta area. Int. J. Electr. Comput. Eng. 7, 330–336 (2017)Google Scholar
  26. 26.
    Loper, E., Bird, S.: NLTK : the natural language toolkit. In: Proceedings of the COLING/ACL 2006 Interactive Presentation Sessions, pp. 69–72 (2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversitas IndonesiaDepokIndonesia

Personalised recommendations