Advertisement

Structural Analysis of Sintered Products of BaTiO3 Doped with Sm3+

  • J. P. Hernández-Lara
  • M. Pérez-LabraEmail author
  • C. C. Gutierrez-Hernández
  • F. R. Barrientos-Hernández
  • J. A. Romero-Serrano
  • A. Hernández-Ramírez
  • M. Reyes-Pérez
  • J. C. Juárez-Tapia
  • V. E. Reyes-Cruz
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Cations such as samarium (Sm) are highly soluble in barium titanate (BaTiO3) and, therefore, they are used in a variety of ways to modify their properties. BaTiO3 has a perovskite structure (ABO3), where Ba occupies the A site and Ti site B. Sm is incorporated into site A, where it behaves as a donor according to the equation: \( Ba^{2 + } \to Sm^{3 + } + e \). In this research, electroceramics base BaTiO3 doped with Sm3 + were synthesized using the common solid-state reaction method through the electronic compensation mechanism (Ba1−xSmxTi1−x/4O3) with x = 0.001 and 0.002, % weight. The precursor powders (BaCO3, TiO2, and Sm2O3) were dried at 200 °C for 6 h and later the physical mixtures were decarbonated at 900 °C and sintered at 1450 °C for 8 h. X-ray diffraction spectra (XRD) obtained for the samples after the decarbonation process showed the total absence of carbonates in them. The structural analysis by XRD of the samples after the sintering process it suggests a predominantly tetragonal crystalline BaTiO3 phase. These results were confirmed with those obtained by Raman spectroscopy in the bands at 205, 265, and 305 cm−1.

Keywords

BaTiO3 Sm3+ Doping Sintering 

References

  1. 1.
    Moulson AJ, Herbert JM (1990) Electroceramics: materials, properties and applications. Chapman-Hall, LondonGoogle Scholar
  2. 2.
    Sunatori H, Okamoto T, Takata M (2003) J Ceram Soc Jpn 111:217CrossRefGoogle Scholar
  3. 3.
    Kishi H, Kohzu N, Sugino J et al (1999) J Eur Ceram Soc 19:1043–1046CrossRefGoogle Scholar
  4. 4.
    Tsur Y, Dunbar TD, Randall CA (2001) J Electroceram 7:25–34CrossRefGoogle Scholar
  5. 5.
    Tsur Y, Hitomi A, Scrymgeour I et al (2001) Jpn J Appl Phys 40:255–258CrossRefGoogle Scholar
  6. 6.
    Takada K, Chang E, Smyth DM (1987) Adv Ceram 19:147–152Google Scholar
  7. 7.
    Buscaglia MT, Buscaglia V, Viviani M et al (2000) J Eur Ceram Soc 20:1997–2007CrossRefGoogle Scholar
  8. 8.
    Lu DY, Koda T, Suzuki H, Toda M (2005) Jpn J Ceram Soc 113:721–727CrossRefGoogle Scholar
  9. 9.
    Barrientos, HFR, Lira, HIA, Gómez, YC, Arenas, FA, Cabrera, SR, Pérez, LM (2014) J Alloys Compd 583:587–592Google Scholar
  10. 10.
    Ganguly M, Rout SK, Woo WS, Ahn CW, Kim IW (2013) Phys B 411:26–34CrossRefGoogle Scholar
  11. 11.
    Pérez-Labra M, Barrientos-Hernández FR, Hernández-Lara JP, Romero-Serrano JA, Reyes-Pérez M, Reyes-Cruz VE, Juárez-Tapia JC, Urbano-Reyes G (2018) Revista de Metalurgia 54:(3)CrossRefGoogle Scholar
  12. 12.
    Hernández Lara JP, Pérez Labra M, Barrientos Hernández FR, Romero Serrano JA, Ávila Dávila EO, Thangarasu P, Hernández Ramirez A (2017) Mat Res 20:538–542CrossRefGoogle Scholar
  13. 13.
    Ikushima H, Hayakawa S (1976) Natl Tech Rep. 13:209–216Google Scholar
  14. 14.
    Matsuoka T, Fujimura M, Matsuo Y, Hayakawa S (1972) J Am Ceram Soc 55:108-CrossRefGoogle Scholar
  15. 15.
    Gardiner DJ (1989) Springer. ISBN 978-0-387-50254-0Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • J. P. Hernández-Lara
    • 1
  • M. Pérez-Labra
    • 1
    Email author
  • C. C. Gutierrez-Hernández
    • 1
  • F. R. Barrientos-Hernández
    • 1
  • J. A. Romero-Serrano
    • 2
  • A. Hernández-Ramírez
    • 2
  • M. Reyes-Pérez
    • 1
  • J. C. Juárez-Tapia
    • 1
  • V. E. Reyes-Cruz
    • 1
  1. 1.Academic Area of Earth Sciences and MaterialsAutonomous University of Hidalgo StatePachucaMexico
  2. 2.Metallurgy and Materials DepartmentESIQIE-IPNMexico CityMexico

Personalised recommendations