Advertisement

Production and Characterization of a Hybrid Composite of Polypropylene Reinforced with Piassava (Attalea funifera Martius) Fiber and Light Green Clay

  • Sabrina A. CorreiaEmail author
  • Pedro V. Cruz
  • Tasson C. Rodrigues
  • Alex Monteiro
  • Francisco R. V. Diaz
  • Esperidiana A. B. Moura
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Waste materials have been frequently used as reinforcing materials, to obtain a composite with better properties. Piassava palm is native to the state of Bahia (Brazil) and its fiber, piassava fiber (PF) is a waste material frequently used for industrial and domestic brooms, industrial brushes, carpets, and roofs. The light green clay (LGC) is a natural smectite Brazilian clay from the state of Paraiba. This work aims to produce and evaluate the advantages of this new product achieved by the inclusion of these two natural materials into polypropylene (PP) matrix. A melting extrusion process, using a twin-screw extruder and injection molding machine was used to obtain PP/LGC (97/3 wt%), PP/PF (90/10 wt%) and PP/LGC/PF (87/3/10 wt%) composites. The materials were characterized by mechanical tests, TG, DSC, SEM, and XRD analysis.

Keywords

Polypropylene Piassava Light green clay Composites Waste materials 

Notes

Acknowledgements

The authors wish to thank CAPES and CNPq to provide the support for this work.

References

  1. 1.
    Bureau MN, Ton-That M-T, Perrin-Sarazin F (2006) Essential work of fracture and failure mechanisms of polypropylene–clay nanocomposites. Eng Fract Mech 73(16):2360–2374CrossRefGoogle Scholar
  2. 2.
    Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596CrossRefGoogle Scholar
  3. 3.
    Fu S-Y et al (2000) Tensile properties of short-glass-fiber-and short-carbon-fiber-reinforced polypropylene composites. Compos Part A Appl Sci Manuf 31(10):1117–1125CrossRefGoogle Scholar
  4. 4.
    Gomes LVR (2016) Preparação e caracterização de nanocompósitos de polipropileno reforçados com argila verde lodo e fibra de castanha-do-brasil. São Paulo. 2016. Tese (Doutor em Engenharia Metalúrgica e de Materiais). Escola Politécnica da Universidade de São PauloGoogle Scholar
  5. 5.
    Kalia S, Avérous L, Njuguna J, Dufresne A, Cherian BM (2011a) Natural fibers, bio-and nanocomposites. Int J Polym SciGoogle Scholar
  6. 6.
    Kalia S, Dufresne A, Cherian BM, Kaith BS, Avérous L, Njuguna J, Nassiopoulos E (2011b). Cellulose-based bio-and nanocomposites: a review. Int J Polym SciGoogle Scholar
  7. 7.
    Kumar V, Singh A (2013) Polypropylene clay nanocomposites. Rev Chem Eng 29(6):439–448Google Scholar
  8. 8.
    Manchado MAL et al (2005) Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing. Carbon 43(7):1499–1505CrossRefGoogle Scholar
  9. 9.
    Mir A, Zitoune R, Collombet F, Bezzazi B (2010) Study of mechanical and thermomechanical properties of jute/epoxy composite laminate. J Reinf Plast Compos 29(11):1669–1680CrossRefGoogle Scholar
  10. 10.
    Nuñez AJ et al (2002) Thermal and dynamic mechanical characterization of polypropylene-wood flour composites. Polym Eng Sci 42(4)CrossRefGoogle Scholar
  11. 11.
    Paiva LB, Morales AR, Valenzuela-Diaz FR (2008) Argilas organofílicas: características, metodologias de preparação, compostos de intercalação e técnicas de caracterização. Cerâmica 54(330):213–226CrossRefGoogle Scholar
  12. 12.
    Pickering KL, Li Y, Farrell RL, Lay M (2007) Interfacial modification of hemp fiber reinforced composites using fungal and alkali treatment. J Biobased Mater Bio 1(1):109–117Google Scholar
  13. 13.
    Pukánszky B (1999) Particulate filled polypropylene composites. In: Polypropylene. Springer, Dordrecht, pp 574–580Google Scholar
  14. 14.
    Rachini A, Le Troedec M, Peyratout C, Smith A (2008) Comparison of the thermal degradation of natural, alkali-treated and silane-treated hemp fibers under air and an inert atmosphere. Wiley InterScience 112:226–234CrossRefGoogle Scholar
  15. 15.
    Rousseaux DDJ et al (2011) Water-assisted extrusion of polypropylene/clay nanocomposites: a comprehensive study. Polymer 52(2):443–451CrossRefGoogle Scholar
  16. 16.
    Sarikanat M (2010) The influence of oligomeric siloxane concentration on the mechanical behaviors of alkalized jute/modified epoxy composites. J Reinf Plast Compos 29(6):807–817CrossRefGoogle Scholar
  17. 17.
    Yang, H-S et al (2004) Rice-husk flour filled polypropylene composites; mechanical and morphological study. Compos Struct 63(3–4):305–312CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Sabrina A. Correia
    • 1
    • 2
    Email author
  • Pedro V. Cruz
    • 1
  • Tasson C. Rodrigues
    • 1
    • 3
  • Alex Monteiro
    • 1
  • Francisco R. V. Diaz
    • 4
  • Esperidiana A. B. Moura
    • 1
  1. 1.Center for Chemical and Environmental Technology, Nuclear and Energy Research InstituteSão PauloBrazil
  2. 2.Department of Chemical Engineering, Polytechnic SchoolUSPSão PauloBrazil
  3. 3.Butantan Institute, IBUSão PauloBrazil
  4. 4.Metallurgical and Materials Engineering Department, Polytechnic SchoolUniversity of São PauloSão PauloBrazil

Personalised recommendations