Advertisement

Innovation of Building Materials: Ecological Bricks, Characterization of Complementary Inorganic Raw Materials

  • Javier Flores-Badillo
  • Adriana Rojas-LeónEmail author
  • Alma Delia Román-Gutiérrez
  • Juan Hernández-Ávila
  • Eleazar Salinas-Rodríguez
  • Christopher Contreras-López
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Morphological, chemical and mineralogical characterization of inorganic raw materials (pumicite and heavy clay) was carried out by SEM-EDS, XRF and XRD. It was found that pumicite shows the following composition; 71.78% SiO2, 14.83% Al2O3, 2.57% Fe2O3, 2.32% FeO, 2.37% Na2O, 4.12% K2O, 1.51% CaO and 0.5% P2O5. The major phase corresponds to Sanidine and as minor phases are Berlinite, Alkaline calcium and sodium ferritesilicoaluminate and Tridymite. For heavy clay, there was a chemical composition of 63.0% SiO2, 19.9% Al2O3, 6.2% Fe2O3, 1.5% Na2O, 2.1% K2O, 3.9% CaO, 2.5% MgO and 0.9% TiO2. Also are present in some contents of Illite, Kaolinite and Tridymite; Quartz, Hematite, Vermiculite and Montmorillonite are presented as minor phases. Additionally, the Atterberg number and the thixotropy were determined to heavy clay, finding values of 31.31 ± 9.45% and 2.87 ± 1.64%, respectively.

Keywords

Characterization Ecological materials Pumicite Heavy clay 

Notes

Acknowledgements

The authors thank CONACYT for the support to this project benefited by the program of stimuli to innovation (PEI) with project number 250701. Also, to the Autonomous University of the State of Hidalgo, for the support granted for the development of this research work.

References

  1. 1.
    Zarandi MHF, Mansour S, Hosseinijou SA (2011) A material selection methodology and expert system for sustainable product design. Int J Adv Manuf Technol 57:885–903CrossRefGoogle Scholar
  2. 2.
    Cholake ST, Rajarao R, Henderson P, Raman Rajagopal R, Sahajwalla V (2017) Composite panels obtained from automotive waste plastics and agricultural macadamia shell waste. J Clean Prod  https://doi.org/10.1016/j.jclepro.2017.03.074CrossRefGoogle Scholar
  3. 3.
    Martínez-Urreaga J, González-Sánchez C, Martínez-Aguirre A, Fonseca-Valero C, Acosta J, de la Orden MU (2015) Sustainable eco-composites obtained from agricultural and urban waste plastic blends and residual cellulose fibers. J Clean Prod 108(A):377–384CrossRefGoogle Scholar
  4. 4.
    Demirbaş A, Aslan A (1998) Effects of ground hazelnut shell, wood, and tea waste on the mechanical properties of cement. Cem Concr Res 28(8):1101–1104. ISSN 0008-8846, https://doi.org/10.1016/S0008-8846(98)00064-7CrossRefGoogle Scholar
  5. 5.
    Abdullah AC, Lee CC (2017) Effect of treatments on properties of cement-fiber bricks utilizing rice husk, corncob and coconut Coir. Proc Eng 180:1266–1273CrossRefGoogle Scholar
  6. 6.
    Soroushian P, Simsek O, Elzafraney M, Ghebrab T (2009) Compatibility of cereal straw with hydration of cement. J Sol Waste Technol Manage 35(1):1–6CrossRefGoogle Scholar
  7. 7.
    Wang L, Chen SS, Tsang DCW, Poon CS, Dai J (2017) CO2 curing and fibre reinforcement for green recycling of contaminated wood into high-performance cement-bonded particleboards. J CO2 Util 18:107–116CrossRefGoogle Scholar
  8. 8.
    Wang L, Chen SS, Tsang DCW, Poon CS, Shih KM (2016) Value-added recycling of construction waste wood into noise and thermal insulating cement-bonded particleboards. Constr Build Mater 125:316–325CrossRefGoogle Scholar
  9. 9.
    Aggarwal LK, Agrawal SP, Thapliyal PC, Karade SR (2008) Cement-bonded composite boards with arhar stalks. Cem Concr Compos 30:44–51CrossRefGoogle Scholar
  10. 10.
    Salinas-Rodríguez E, Flores-Badillo J, Hernández-Ávila J, Vargas-Ramírez M, Flores-Hernández JA, Rodríguez-Lugo V, Cerecedo-Sáenz E (2017) Design and production of a new construction material (bricks), using mining tailings. Int J Eng Sci Res Technol 6(6):225–238. http://doi.org/10.5281/zenodo.809079
  11. 11.
    Flores Badillo J (2012) Caracterización de las escombreras del distrito minero Pachuca-Real del Monte y usos industriales alternos. Universidad Autónoma del Estado de Hidalgo, Pachuca de Soto, Hidalgo, MéxicoGoogle Scholar
  12. 12.
    Flores Badillo J, Hernández Ávila J, Patiño Cardona F, Ostos Santos JA, Trápala Pineda NY (2014) Developing alternative building material from mining waste. Adv Mater Res 976:202–206CrossRefGoogle Scholar
  13. 13.
    Flores Badillo J, Hernández Ávila J, Pérez Labra M, Patiño Cardona F, Ostos Santos JA, Trápala Pineda NY (2015a) Developing alternative industrial materials from mining waste. Eng Solut Sustain Mater Resour II (ESS: M&R II)Google Scholar
  14. 14.
    Flores Badillo J, Hernández Ávila J, Salinas Rodríguez E, Pérez Labra M, Rivera Landero I, Mireles García I, Cerecedo Sáenz E (2015b) Preparation of blocks from tailings. Eng Solut Sustain Mater Resour II (ESS: M&R II)Google Scholar
  15. 15.
    Hernández Ávila J, Salinas Rodríguez E, Patiño Cardona F, Rivera Landero I, Flores Badillo J, Trápala Pineda NY et al (2012) Tile production using wastes from mining industry of the Pachuca-Real del Monte Mining District. TMS, pp 203–209Google Scholar
  16. 16.
    Hernández Ávila J, Patiño Cardona F, Rivera Landero I, Trápala Pineda NY, Flores Badillo J (2014) México Patente nº MX/a/2014/007124Google Scholar
  17. 17.
    Flores Badillo J, Hernández Ávila J, Patiño Cardona F, Juárez JC, Mireles I (2013) Elaboración de material de construcción con jales del Distrito Minero Natividad, en el estado de Oaxaca. Boletín de la Sociedad Quimica de México 7:10–12. ISSN 1870-1809Google Scholar
  18. 18.
    Crystal Impact (2010) Match! Versión 1.10. (Brandenburg K, Putz H, Recopiladores) Bonn, Nordrhein-Westfalen, Bundesrepublik DeutschslandGoogle Scholar
  19. 19.
    ASTM (2005) ASTM C-618-05: standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. USAGoogle Scholar
  20. 20.
    Montaño Cisneros E, Robles Camacho J, Corona Chávez P, Martínez Medina M, Ramos Arroyo YR (2006) Caracterización mineral y geoquímica de los jales del Distrito Minero El Oro-Tlalpujahua. Reutilización potencial de los desechos mineros. En: Aguilar EA, Lemus J, Bedolla E, León CA (eds) Memorias del 3er. foro de Ingeniería e Investigación en Materiales, vol 3. Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México, pp 198–203Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Javier Flores-Badillo
    • 1
  • Adriana Rojas-León
    • 1
    Email author
  • Alma Delia Román-Gutiérrez
    • 2
  • Juan Hernández-Ávila
    • 3
  • Eleazar Salinas-Rodríguez
    • 3
  • Christopher Contreras-López
    • 4
  1. 1.Bio Tec de Hidalgo S. de R.L. de C.V. Calle Guadalupe Victoria 13-BMineral del MonteMexico
  2. 2.Cuerpo Académico de Química en Alimentos. Área Académica de Química, Universidad Autónoma del Estado de HidalgoMineral de la ReformaMexico
  3. 3.Cuerpo Académico de Materiales Avanzados. Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de HidalgoMineral de la ReformaMexico
  4. 4.Laboratorio de Conservación del Patrimonio Natural y Cultural. Edificio de la Unidad de PosgradoCircuito de Posgrados, Ciudad Universitaria, Delegación CoyoacánCiudad de MéxicoMexico

Personalised recommendations