Advertisement

Differences in Properties of Pro-degradant Added PP and Gamma-Irradiated PP Under Environmental Aging

  • Rebeca da Silva Grecco RomanoEmail author
  • Washington Luiz Oliani
  • Vijaya Rangari Kumar
  • Duclerc Fernandes Parra
  • Ademar Benévolo Lugão
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Polypropylene (PP) is used for different sectors of the industry and in consequence produces a large amount of waste discarded at landfills causing serious environmental impacts. Controlled degradation of PP can be achieved by exposing the polymers to defined parameters, such as absorbed radiation dose, weather, oxygen, etc. The aim of this study was to compare two methods of accelerated degradation: gamma irradiation of PP 20 kGy and the incorporation of the commercial pro-degradant d2w® (1 wt%) in PP. Dumbbell samples were manufactured by the injection process and exposed to the environment aging for 90 days. Structural changes in PP macromolecules are created upon exposure to ionizing radiation such as main chain scission, crosslinking and peroxidation (in presence of air). Differential scanning calorimetry (DSC), thermogravimetric analysis (TG), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX), X-ray fluorescence, Fourier-transformed infrared spectroscopy (FTIR) and mechanical tests characterized the samples. The samples previously irradiated, PP 20 kGy, after natural aging showed higher oxidation and presence of surface cracks than the PP d2w®. They also showed presence of carbonyl groups and decrease of melting temperature corroborating with oxo-degradation.

Keywords

Ionizing radiation Polypropylene Pro-degradant Environmental aging 

Notes

Acknowledgements

The authors thank CAPES for supporting the Project Electronuclear 012/2013, Centre of Science and Technology of Materials—CCTM–IPEN for microscopy analysis (SEM), the technicians Eleosmar Gasparin and M.Sc. Djalma B. Dias for technical support and multipurpose gamma irradiation facility at the CTR–IPEN.

References

  1. 1.
    Karger-Kocsis J (1999) Polypropylene Polymer Science and Technology. In Mulhsupt R (Ed) Ziegler-Natta catalysis and propylene polymerization. Dordrecht, Kluwer Academic Publishers, The NetherlandsGoogle Scholar
  2. 2.
    Pospisil J (2003) Polym Degrad Stab 82:145–162CrossRefGoogle Scholar
  3. 3.
    Karsli NG (2013) Radiat Phys Chem 84:74–78CrossRefGoogle Scholar
  4. 4.
    Stojanovic Z (2005) Polym Degrad Stab 87:279–286CrossRefGoogle Scholar
  5. 5.
    Makuuchi K, Cheng S (2012) John Wiley & SonsGoogle Scholar
  6. 6.
    Parparita E (2015) Ind Eng Chem Res 54:2404–2413CrossRefGoogle Scholar
  7. 7.
    George J (2007) Radiat Phys Chem 76:1205–1212CrossRefGoogle Scholar
  8. 8.
    Romano RSG, Oliani WL, Parra DF, Lugao AB (2016) Evaluation of environmental aging of polypropylene irradiated versus pristine. TMS—Characterization of Minerals and Materials. http://dx.doi.org/10.1002/9781119263722.ch92
  9. 9.
    Komatsu LGH (2016) Radiat Phys Chem 118:11–15CrossRefGoogle Scholar
  10. 10.
    Rabello MS (1997) Polymer 4879:6379–6387CrossRefGoogle Scholar
  11. 11.
    Carvalho CL (2014) J Therm Anal Calorim 115:1627–1632CrossRefGoogle Scholar
  12. 12.
    Contat-Rodrigo L (2013) Polym Degrad Stab 98:2117–2124CrossRefGoogle Scholar
  13. 13.
    ASTM D 638-2014—Standard teste method for tensile properties of plasticsGoogle Scholar
  14. 14.
    ASTM D 1435-2013—Standard practice for outdoor weathering of plasticsGoogle Scholar
  15. 15.
    ASTM D 3418-2015—Standard test method for transition temperature of polymers by differential scanning calorimetry (DSC)Google Scholar
  16. 16.
    Mark JE (2007) Physical properties of polymers handbook, 2nd edn. SpringerGoogle Scholar
  17. 17.
    Fechine GJM (2009) Polym Eng Sci 49:123–128CrossRefGoogle Scholar
  18. 18.
    Montagna LS (2015) Polym Degrad Stab 120:186–192CrossRefGoogle Scholar
  19. 19.
    Ojeda T (2011) Polym Degrad Stab 96:703–707CrossRefGoogle Scholar
  20. 20.
    Craig IH (2005) Polym J 46:505–512CrossRefGoogle Scholar
  21. 21.
    Alfaro EF (2013) Radiat Phys Chem 84:163–165CrossRefGoogle Scholar
  22. 22.
    Krupa I (2011) Polym Degrad Stab 72:505–508CrossRefGoogle Scholar
  23. 23.
    Corti AS (2010) Polym Degrad Stab 95:1106–1114CrossRefGoogle Scholar
  24. 24.
    Yakimets I (2004) Polym Degrad Stab 86:59–67CrossRefGoogle Scholar
  25. 25.
    Butnaru E (2016) Radiat Phys Chem 125:134–144CrossRefGoogle Scholar
  26. 26.
    Wiles DM (2006) Polym Degrad Stab 91:1581–1592CrossRefGoogle Scholar
  27. 27.
    Roy PK (2009) Polym Degrad Stab 94:1033–1039CrossRefGoogle Scholar
  28. 28.
    Albano C (2011) Polym Bull 66:1137–1148CrossRefGoogle Scholar
  29. 29.
    Roe-Sosa A (2015) J Appl Polym Sci 42721:1–11Google Scholar
  30. 30.
    Denac M (2003) Polym Degrad Stab 82:263–270CrossRefGoogle Scholar
  31. 31.
    Salah HBH (2016) Polym Eng Sci 56:469–478CrossRefGoogle Scholar
  32. 32.
    Gonzalez A (2016) Polym Bull 73:39–51CrossRefGoogle Scholar
  33. 33.
    Schnabel W (1981) Polymer degradation: principles and practical applications. Hanser International, MunchenGoogle Scholar
  34. 34.
    Osawa Z (1998) Polym Degrad Stab 20:203–236CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Rebeca da Silva Grecco Romano
    • 1
    Email author
  • Washington Luiz Oliani
    • 1
  • Vijaya Rangari Kumar
    • 2
  • Duclerc Fernandes Parra
    • 1
  • Ademar Benévolo Lugão
    • 1
  1. 1.Nuclear and Energy Research Institute, IPEN-CNEN/SPSão PauloBrazil
  2. 2.Tuskegee UniversityTuskegeeUSA

Personalised recommendations