Advertisement

Characterization of Antistatic Packaging Based on PET/rGO

  • Leila Figueiredo de MirandaEmail author
  • Antônio Hortêncio Munhoz Jr
  • Terezinha Jocelen Masson
  • Leonardo Gondin de Andrade e Silva
  • Karl Friehe
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Package for electronic components is one that protects an electronic or electrical device against electrostatic discharge. Traditionally, antistatic packages are produced with polystyrene (PS) or polypropylene (PP) filled with carbon black. Recently, studies have been carried out successfully for the application of polyethylene terephthalate (PET) filled with carbon black. This work aimed to obtain and characterize nanocomposites based on PET filled with reduced graphene oxide (rGO) and compare its physicochemical properties with PET filled with carbon black and PP filled with carbon black used in anti-static packaging. PET compounds containing 0.1; 0.3; 0.5 and 0.7wt% reduced graphene oxide were obtained by the modified Hummers process from the graphite and reduced with hydrazine. The thermomechanical, electrical and morphological properties of the obtained compounds were determined. The results showed that the addition of reduced graphene oxide to PET causes an increase in the melt flow index, also increase the tensile strength and electrical conductivity. The addition of reduced graphene oxide promotes the decrease in the hardness and thermal resistance of the obtained nanocomposites. Nanocomposites based on PET containing 0.5wt% and 0.7wt% reduced graphene oxide can be used in the handling, transport and storage of electronic components since their mechanical, thermal and resistivity properties are satisfactory for this purpose.

Keywords

Nanocomposites Polyethylene terephthalate (PET) Reduced graphene oxide (rGO) Antistatic packaging 

References

  1. 1.
    ABRE. Associação Brasileira de Embalagem. O Setor: Dados de Mercado. Information on http://www.abre.org.br/setor/dados-de-mercado/
  2. 2.
    Ulrich RK (2006) Advanced electronic packaging, 2nd edn. Wiley, New YorkCrossRefGoogle Scholar
  3. 3.
    Mesquita AS (2014) Obtenção e caracterização de embalagens antiestáticas para componentes eletrônicos a base de PET carregado com negro de fumo, Dissertação (Mestrado Profissional em Engenharia de Materiais). Universidade Presbiteriana Mackenzie, São PauloGoogle Scholar
  4. 4.
    Fabris S, Freire MTA, Reyes FG (Outubro 2006) Embalagens Plásticas: tipos de materiais, contaminação de alimentos e aspectos de legislação. Revista Brasileira de Toxicologia 19(2):59–70Google Scholar
  5. 5.
    Castro Neto AH, Guinea F, Peres NM. Drawing conclusions from graphene. Phys World 19(33)CrossRefGoogle Scholar
  6. 6.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  7. 7.
    Poh HL, Sanek F, Ambrosi A, Zhao G, Sofer Z, Pumera M (2012) Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale 4:3515CrossRefGoogle Scholar
  8. 8.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRefGoogle Scholar
  9. 9.
    Babak F, Abolfazl H, Alimorad R, Parviz G (2014) Preparation and mechanical properties of graphene oxide: cement nanocomposites. Sci World J 276323:10Google Scholar
  10. 10.
    Dimiev AM, Tour JM (2014) Mechanism of graphene oxide formation. ACS Nano 8(3):3060–3068CrossRefGoogle Scholar
  11. 11.
    Krishnamoorthy K, Veerapandian M, Yun K, Kim SJ (2013) The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 53:38–49CrossRefGoogle Scholar
  12. 12.
    Lin C, Wei W, Hu YH (2016) Catalytic behavior of graphene oxide for cement hydration process. J Phys Chem Solids 89:128CrossRefGoogle Scholar
  13. 13.
    Lv S, Ma Y, Qiu C, Sun T, Liu J, Zhou Q (2013) Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Constr Build Mater 49:121–127CrossRefGoogle Scholar
  14. 14.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A (2010) Improved synthesis of graphene oxide. ASC Nano 8:4806–4814CrossRefGoogle Scholar
  15. 15.
    Shao G, Lu Y, Wu F, Yang C, Zeng F, Wu Q (2012) Graphene oxide: the mechanisms of oxidation and exfoliation. J Mater Sci 47:4400–4409CrossRefGoogle Scholar
  16. 16.
    Sharma S, Kothiyal NC, Chitkara M (2016) Enhanced mechanical performance of cement nanocomposite reinforced with graphene oxide synthesized from mechanically milled graphite and its comparison with carbon nanotubes reinforced nanocompósito. R S C Adv 30:915–932Google Scholar
  17. 17.
    Mehl H, Matos CF, Neiva EGC, Domingues SH, Zarbin AJG (2014) Efeito da variação de parâmetros reacionais na preparação de grafeno via oxidação e redução do grafite. Quím Nova 37(10)Google Scholar
  18. 18.
    Cordeiro GL, Oliveira RR, Ferreira NAM, Xavier GL, Yoshito WK, Lima NB, Lazar DRR, Ussui V (2015) Síntese química e caracterização de Grafeno. In: 59o Congresso Brasileiro de Cerâmica. Aracaju, SEGoogle Scholar
  19. 19.
    Maraschim TG (2016) Preparação de óxido de grafeno e óxido de grafeno reduzido e dispersão em matriz polimÉrica biodegradável. Dissertação de Mestrado. Programa de Pós-Graduação em Engenharia e Tecnologia de Materiais. Pontifícia Universidade Católica do Rio Grande do Sul. Porto Alegre—RSGoogle Scholar
  20. 20.
    Nunes LO (2013) Síntese, caracterização e aplicação do óxido de grafite e grafeno em estudos eletroquímicos envolvendo ácido ascórbico, ácido úrico, dopamina e epinefrina. Dissertação de Mestrado. Programa de Pós-Graduação em Química. Universidade Federal dos Vales do Jequitinhonha e Mucuri. Diamantina, MGGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Leila Figueiredo de Miranda
    • 1
    Email author
  • Antônio Hortêncio Munhoz Jr
    • 1
  • Terezinha Jocelen Masson
    • 1
  • Leonardo Gondin de Andrade e Silva
    • 2
  • Karl Friehe
    • 1
  1. 1.Universidade Presbiteriana MackenzieSão PauloBrazil
  2. 2.Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN/SP)São PauloBrazil

Personalised recommendations