Advertisement

Chemical and Instrumental Characterization of a Sulphosalt Lead Type Jamesonite

  • M. Reyes PérezEmail author
  • Elia Guadalupe Palacios Beas
  • Francisco R. Barrientos
  • Miguel Pérez Labra
  • Julio Cesar Juárez Tapia
  • Iván Alejandro Reyes Domínguez
  • Mizraim Uriel Flores Guerrero
  • Michell Aislinn Teja Ruiz
  • Carlos Elías Gutiérrez García
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

The sulfides are the main source for the production of metallic lead, galena (PbS), and the sulphosalt type jamesonite (Pb4FeSb6S14) are the main mineralogical species present in the concentrates, however in the mill, they suffer oxidation affecting their recovery by flotation. Prior to the oxidation studies, the mineral was thoroughly characterized. The results of DRX indicate a single and majority phase identified with PDF 96-901-2801 corresponding to jamesonite. While the analysis made by SEM mappings to different sizes of particles screened in dry and washed with ultrasound, corroborated the presence of the main elements that constitute this species (Pb, Fe, Sb, S). The chemical analysis via ICP showed that lead is the major element followed by Sb, S and Fe. The infrared spectra showed the superficial decomposition of sulfur and the formation of metal sulphates.

Keywords

Jamesonite Antimony Lead 

References

  1. 1.
    Krist IK (1978) Sulphosalt minerals: crystal chemistry and morphology. Tech 13(4):449–458Google Scholar
  2. 2.
    Makovicky E (1993) Rod-based sulphosalt structures derived from the SnS and PbS archetypes. Eur J Miner 5:545–592CrossRefGoogle Scholar
  3. 3.
    Krivovichev SV (2008) Nanotubes in minerals and mineral-related systems. minerals as advanced materials I. In: Krivovichev SV (ed), Springer, Heidelberg, pp 179–191Google Scholar
  4. 4.
    Kharbish S, Jelen S (2016) The determination of the Sb/As content in natural tetrahedrite-tennantite and bournonite-seligmannite solid solution series by means of Raman spectrometry. Vib Spectrosc 85:157–166CrossRefGoogle Scholar
  5. 5.
    Chen XF, Peng RM (2008) Effect of calcium hypochlorite on the flotation separation of galena. Nonferr Met 60(3):129–132Google Scholar
  6. 6.
    Hu YH, Feng QM (2006) Mineral processing technology and equipment. Science Press, BeijingGoogle Scholar
  7. 7.
    Anthony JW, Bideaux RA, Bladh KW, Nichols MC (2005) Handbook of mineralogy. Mineralogical society of AmericaGoogle Scholar
  8. 8.
  9. 9.
    Sun YL, Li FL (2007) Mineral processing flowsheet for Long Zixin Pb–Zn–Sb–Ag polymetallic ores. Gansu Metall 29(4):30–32Google Scholar
  10. 10.
    Sun W, Han H, Tao H, Liu R (2015) Int J Mining Sci Technol 25:53−57Google Scholar
  11. 11.
    Chen J, Li Y, Long Q, Wei Z, Chen Y (2011) Int J Miner Process 100:54−56Google Scholar
  12. 12.
    Nakamoto K (1997) Infrared and Raman Spectra of inorganic and coordination compound, 5th edn. Wiley, New York, pp 100–121Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • M. Reyes Pérez
    • 1
    Email author
  • Elia Guadalupe Palacios Beas
    • 2
  • Francisco R. Barrientos
    • 1
  • Miguel Pérez Labra
    • 1
  • Julio Cesar Juárez Tapia
    • 1
  • Iván Alejandro Reyes Domínguez
    • 3
  • Mizraim Uriel Flores Guerrero
    • 4
  • Michell Aislinn Teja Ruiz
    • 1
  • Carlos Elías Gutiérrez García
    • 1
  1. 1.Área Académica de Ciencias de la Tierra y Materiales AACTyM, UAEH, Mineral de la ReformaPachucaMexico
  2. 2.Escuela Superior de Ingeniería Química e Industrias Extractivas ESIQUIE, Instituto Politécnico Nacional, Unidad Profesional, Adolfo López MateosMexico CityMexico
  3. 3.Instituto de MetalurgiaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  4. 4.Universidad Tecnológica de Tulancingo. Área de Electromecánica IndustrialTulancingo, HidalgoMexico

Personalised recommendations