Advertisement

Thermodynamic Characteristics of Ferronickel Slag Sintered in the Presence of Magnesia

  • Foquan Gu
  • Zhiwei PengEmail author
  • Yuanbo Zhang
  • Huimin Tang
  • Lei Ye
  • Weiguang Tian
  • Guoshen Liang
  • Joonho Lee
  • Mingjun Rao
  • Guanghui Li
  • Tao Jiang
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

The rotary kiln-electric furnace (RKEF) process has undergone a rapid development during the past decade, producing a significant quantity of ferronickel slag. At present, the ferronickel slag has become the fourth largest industrial solid waste in China with a utilization ratio of less than 10 wt%. It is urgent to seek an efficient method for utilization of ferronickel slag. In this study, the thermodynamic characteristics of ferronickel slag sintered in the presence of magnesia (additive) for preparing refractory materials were assessed by calculating relevant thermodynamic functions and phase diagrams. The thermodynamic results showed that by sintering ferronickel slag with the addition of magnesia at appropriate temperatures, it is possible to promote the formation of forsterite and spinel phases, which would contribute to high refractoriness of the refractory materials derived from the slag.

Keywords

Thermodynamic characteristics Sintering Ferronickel slag Refractory materials Phase diagram 

Notes

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China under Grants 51774337, 51504297, and 51811530108, the Natural Science Foundation of Hunan Province, China, under Grant 2017JJ3383, the Key Laboratory for Solid Waste Management and Environment Safety (Tsinghua University) Open Fund under Grant SWMES2017-04, the Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials under Grant 17kffk11, the Fundamental Research Funds for the Central Universities of Central South University under Grants 2018zzts220 and 2018zzts779, the Co-Innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources under Grant 2014-405, the Guangdong Guangqing Metal Technology Co. Ltd. under Grant 738010210, the Innovation-Driven Program of Central South University under Grant 2016CXS021, and the Shenghua Lieying Program of Central South University under Grant 502035001.

References

  1. 1.
    Dourdounis E, Stivanakis V, Angelopoulos GN, Chaniotakis E, Frogoudakis E, Papanastasiou D, Papamantellos DC (2004) High-alumina cement production from FeNi-ERF slag, limestone and diasporic bauxite. Cement Concrete Res 34(6):941–947CrossRefGoogle Scholar
  2. 2.
    Balomenos E, Panias D (2013) Iron recovery and production of high added value products from the metallurgical by-products of primary aluminum and ferronickel industries. In: Proceedings of the 3rd international slag valorisation symposium, Leuven, Belgium, pp 161−72Google Scholar
  3. 3.
    Zhang Z, Zhu Y, Yang T, Li L, Zhu H, Wang H (2017) Conversion of local industrial wastes into greener cement through geopolymer technology: a case study of high-magnesium nickel slag. J Clean Prod 141:463–471CrossRefGoogle Scholar
  4. 4.
    Peng Z, Gu F, Zhang Y, Tang H, Ye L, Tian W, Liang G, Rao M, Li G, Jiang T (2018) Chromium: a double-edged sword in preparation of refractory materials from ferronickel slag. ACS Sustainable Chem Eng 6:10536–10544CrossRefGoogle Scholar
  5. 5.
    Lemonis N, Tsakiridis PE, Katsiotis NS, Antiohos S, Papageorgiou D, Katsiotis MS, Beazi-Katsioti M (2015) Hydration study of ternary blended cements containing ferronickel slag and natural pozzolan. Constr Build Mater 81:130–139CrossRefGoogle Scholar
  6. 6.
    Kirillidi Y, Frogoudakis E (2005) Electricarc furnace slag utilization. In: Proceedings of the 9th international conference on environmental science and technology, Rhodes, Greece, pp 768−772Google Scholar
  7. 7.
    Saha AK, Sarker PK (2016) Expansion due to alkali-silica reaction of ferronickel slag fine aggregate in OPC and blended cement mortars. Constr Build Mater 123:135–142CrossRefGoogle Scholar
  8. 8.
    Maragkos I, Giannopoulou I, Panias D (2009) Synthesis of ferronickel slag-based geopolymers. Miner Eng 22(2):196–203CrossRefGoogle Scholar
  9. 9.
    Komnitsas K, Zaharaki D, Perdikatsis V (2009) Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers. J Hazard Mater 161(2–3): 760−768Google Scholar
  10. 10.
    Rawlings RD, Wu JP, Boccaccini AR (2006) Glass-ceramics: their production from wastes-a review. J Mater Sci 41:733–761CrossRefGoogle Scholar
  11. 11.
    Karamanov A, Paunović P, Ranguelov B, Ljatifi E, Kamusheva A, Nacevski G, Karamanova E, Grozdanov A (2017) Vitrification of hazardous Fe-Ni wastes into glass-ceramic with fine crystalline structure and elevated exploitation characteristics. J Environ Chem Eng 5(1):432–441CrossRefGoogle Scholar
  12. 12.
    Perederiy I, Papangelakis VG, Buarzaiga M, Mihaylov I (2011) Cotreatment of converter slag and pyrrhotite tailings via high pressure oxidative leaching. J Hazard Mater 194:399–406CrossRefGoogle Scholar
  13. 13.
    Gu F, Peng Z, Zhang Y, Tang H, Ye L, Tian W, Liang G, Rao M, Li G, Jiang T (2018) Facile route for preparing refractory materials from ferronickel slag with addition of magnesia. ACS Sustainable Chem Eng 6:4880–4889CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Foquan Gu
    • 1
  • Zhiwei Peng
    • 1
    Email author
  • Yuanbo Zhang
    • 1
  • Huimin Tang
    • 1
  • Lei Ye
    • 1
  • Weiguang Tian
    • 2
  • Guoshen Liang
    • 2
  • Joonho Lee
    • 3
  • Mingjun Rao
    • 1
  • Guanghui Li
    • 1
  • Tao Jiang
    • 1
  1. 1.School of Minerals Processing & BioengineeringCentral South UniversityChangshaChina
  2. 2.Guangdong Guangqing Metal Technology Co. LtdYangjiangChina
  3. 3.Department of Materials Science and EngineeringKorea UniversitySeoulSouth Korea

Personalised recommendations