Advertisement

Raman Spectroscopy on the KBF4–KF–KCl Molten Salt System

  • Xianwei HuEmail author
  • Bo Li
  • Jiangyu Yu
  • Zhongning Shi
  • Bingliang Gao
  • Zhaowen Wang
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

KBF4–KF–KCl is an important subsystem of KBF4–K2TiF6–KF–KCl molten salt system which is used as the electrolyte to electrodeposit TiB2. In the present study, Raman spectroscopy was used to study the ionic structure of the KBF4–KF–KCl system, in which the molar fraction of KBF4 was 0.3–0.9 and KF and KCl were added with the equimolar molar fraction. Two complexes, namely, BF63− and \( {\text{BF}}^{ - }_{{4}} \) were found in the melts. The addition of KCl to the KF–KBF4 system only had a dilution effect in the melts. Moreover, the addition of Cl caused a reduction in the relative concentration of F in the system so that the ion balance between BF63− and \( {\text{BF}}_{{4}}^{ - } \) moved in the direction of \( {\text{BF}}_{{4}}^{ - } \).

Keywords

KBF4–KF–KCl system TiB2 Wettable cathode Raman spectroscopy B–F complex 

Notes

Acknowledgements

The authors would like to acknowledge the financial support by the National Natural Science Foundation of China (No. 51474060), the National Key R & D Program of China (No. 2017 YFC0805100) and the Fundamental Research Funds for the Central Universities of China (No. N150204010 and N162502002).

References

  1. 1.
    Li J, Lu XJ, Lai YQ et al (2008) Research progress in TiB2 wettable cathode for aluminum reduction. JOM 60(8):32–37CrossRefGoogle Scholar
  2. 2.
    Pawlek RP (2010) Wettable cathodes: an update. In: Johnson JA (ed) Light metals 2010. The Minerals, Metals & Materials Society, Pittsburgh. Springer, New York, pp 1185–1190CrossRefGoogle Scholar
  3. 3.
    Matiasovsky K, Makyta M (1989) Mechanism of the cathode process in the electrochemical syntheisis of TiB2 in molten salts—I. The synthesis in an all-fluoride electrolyte. Electrochim Acta 34(6):861–866CrossRefGoogle Scholar
  4. 4.
    Taranenko VI, Zarutskii IV, Shapoval VI et al (1992) Mechanism of the cathode process in the electrochemical syntheisis of TiB2 in molten salts—II. Chloride-fluoride electrolytes. Electrochim Acta 37(2):263–268CrossRefGoogle Scholar
  5. 5.
    Li J, Li B (2007) Electrochemical reduction and electrocrystallization process of B(III) in the LiF–NaF–KF–KBF4 molten salt. Rare Met 26(1):74–78CrossRefGoogle Scholar
  6. 6.
    Makyta M, Danek V, Haarberg GM et al (1996) Electrodeposition of titanium diboride from fused salts. J Appl Electroche 26(3):319–324CrossRefGoogle Scholar
  7. 7.
    Robin A, Ribeiro RB (2000) Pulse electrodeposition of titanium on carbon steel in the LiF–NaF–KF eutectic melt. J Appl Electroche 30(2):239–246CrossRefGoogle Scholar
  8. 8.
    Li J, Li B, Zheng D (2005) Preparation of TiB2 coatings by electroplating in molten salt. Rare Met 24(3):261–266Google Scholar
  9. 9.
    Li J, Li B (2007) Preparation of the TiB2 coatings by electroplating in molten salts. Mater Lett 61(6):1274–1278CrossRefGoogle Scholar
  10. 10.
    Ban YG, Wang ZW, Shi ZN et al (2007) Preparation of TiB2 inert cathode on graphite by electrodeposition process for aluminum electrolysis. In: Sorlie M (ed) Light metals 2007. The Minerals, Metals & Materials Society, Pittsburgh, Springer, New York, pp 1055–1059Google Scholar
  11. 11.
    Fastner U, Steck T, Pascual A et al (2008) Electrochemical deposition of TiB2 in high temperature molten salts. J Alloy Compd 452(1):32–35CrossRefGoogle Scholar
  12. 12.
    Bonadeo HA, Silberman E (1970) The vibrational spectra of sodium, potassium and ammonium tetrafluoroborates. Spectrochim Acta 26(12):2337–2343CrossRefGoogle Scholar
  13. 13.
    Lutz HD, Himmrich J, Schmidt M Lattice vibration spectra. Part LXXXVI. Infrared and Raman spectra of baryte-type TlClO4, TlBF4, and NH4BF4 single crystals and of 11B-enriched NH4BF4. J Alloy Compd 241(1):1–9Google Scholar
  14. 14.
    Bates JB, Quist AS, Boyd GE (1971) Infrared and Raman spectra of polycrystalline NaBF4. J Chem Phys 54(1):124–126CrossRefGoogle Scholar
  15. 15.
    Quist AS, Bates JB, Boyd GE (1971) Raman spectra of molten NaBF4 to 606 C and 8% NaF-92% to 503 C. J Chem Phys 54(11):4896–4901CrossRefGoogle Scholar
  16. 16.
    Bates JB, Quist AS (1975) Vibrational spectra of solid and molten phases of the alkali metal tetrafluoroborates. Spectrochim Acta 31(9):1317–1327CrossRefGoogle Scholar
  17. 17.
    Hu XW, Li B, Zhang X et al (2018) Structure of molten KF-KBF4: Raman spectra characterization. Chin J Nonferrous Met 28(10) (to be published)Google Scholar
  18. 18.
    Lacassagne V, Bessada C, Florian P et al (2002) Structure of high-temperature NaF–AlF3–Al2O3 melts: a multinuclear NMR study. J Phys Chem B 106(8):1862–1868CrossRefGoogle Scholar
  19. 19.
    Tixhon E, Robert E, Gilbert B (1996) The molten MF–AlF3–MCl (M = K, Na): a study by Raman spectroscopy. Vib Spectrosc 13(1):91–98CrossRefGoogle Scholar
  20. 20.
    Gilbert B, Materne T (1990) Reinvestigation of molten fluoroaluminate Raman spectra: the question of the existence of AIF52- ions. Appl Spectrosc 44(2):299–305Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Xianwei Hu
    • 1
    Email author
  • Bo Li
    • 1
  • Jiangyu Yu
    • 1
  • Zhongning Shi
    • 1
  • Bingliang Gao
    • 1
  • Zhaowen Wang
    • 1
  1. 1.School of MetallurgyNortheastern UniversityShenyangPeople’s Republic of China

Personalised recommendations