Advertisement

High-Temperature Study of Perovskite Evaporation

  • Sergey ShornikovEmail author
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Evaporation of perovskite was studied by high-temperature Knudsen effusion mass spectrometric method at 1700–2200 K. Vapor species typical for simple oxides and a small amount of CaTiO3 complex gaseous oxide were identified in the gas phase over perovskite. For the first time, the partial pressure of vapor species in the gas phase over perovskite are compared with those corresponding to simple oxides, showing the predominant effect of the calcium component of perovskite on evaporation character.

Keywords

Knudsen effusion mass spectrometry Thermodynamics of evaporation Perovskite 

References

  1. 1.
    Stefanovsky SV, Yudintsev SV (2016) Titanates, zirconates, aluminates and ferrites as waste forms for actinide immobilization. Russ Chem Rev 85(9):962–994CrossRefGoogle Scholar
  2. 2.
    Coontz R (2013) Newcomer juices up the race to harness sunlight. Science 342(6165):1438–1439Google Scholar
  3. 3.
    Wark D, Boynton WV (2001) The formation of rims on calcium-aluminum-rich inclusions: step I—flash heating. Met Planet Sci 36(8):1135–1166CrossRefGoogle Scholar
  4. 4.
    Zhang J, Huang S, Davis AM, Dauphas N, Hashimoto A, Jacobsen SB (2014) Calcium and titanium isotopic fractionations during evaporation. Geochim Cosmochim Acta 140:365–380CrossRefGoogle Scholar
  5. 5.
    Kirschen M, DeCapitani C (1999) Experimental determination and computation of the liquid miscibility gap in the system CaO–MgO–SiO2–TiO2. J Phase Equil 20(6):593–611CrossRefGoogle Scholar
  6. 6.
    Kazenas EK, Tsvetkov YV (1997) Evaporation of the oxides. Nauka, MoscowGoogle Scholar
  7. 7.
    Chase MW (1998) NIST-JANAF themochemical tablesGoogle Scholar
  8. 8.
    Balducci G, Gigli G, Guido M (1985) Identification and stability determinations for the gaseous titanium oxide molecules Ti2O3 and Ti2O4. J Chem Phys 83(4):1913–1916CrossRefGoogle Scholar
  9. 9.
    Banon S, Chatillon C, Allibert M (1981) Free energy of mixing in CaTiO3–Ti2O3–TiO2 melts by mass spectrometry. Can Met Q 20(1):79–84CrossRefGoogle Scholar
  10. 10.
    Samoilova IO, Kazenas EK (1995) Thermodynamics of dissociation and sublimation of calcium oxide. Russ Met 1:33–35Google Scholar
  11. 11.
    Shornikov SI (1993) Processes of vaporization and thermodynamic properties of the CaO–Al2O3–SiO2 system and the materials based on this system. Thesis, Inst Silicate Chem RAS, Saint-PetersburgGoogle Scholar
  12. 12.
    Groves WO, Hoch M, Johnston HL (1955) Vapor–solid equilibria in the titanium–oxygen system. J Phys Chem 59(2):127–131CrossRefGoogle Scholar
  13. 13.
    Berkowitz J, Chupka WA, Inghram MG (1957) Thermodynamics of the Ti–Ti2O3 system and the dissociation energy of TiO and TiO2. J Phys Chem 61(11):1569–1572CrossRefGoogle Scholar
  14. 14.
    Archakov IY, Shornikov SI, Tchemekova TY, Shultz MM (2000) The behavior of titanium dioxide in the slag melts. In: Proceedings of the 9th world conference on titanium, vol 3. pp 1464–1468Google Scholar
  15. 15.
    Shornikov SI, Archakov IY, Shultz MM (2000) Thermodynamic properties of the melts, containing titanium dioxide. In: Proceedings of the 9th world conference on titanium, vol 3. pp 1469–1473Google Scholar
  16. 16.
    Ostrovski O, Tranell G, Stolyarova VL, Shultz MM, Shornikov SI, Ishkildin AI (2000) High–temperature mass spectrometric study of the CaO–TiO2–SiO2 system. High Temp Mater Proc 19(5):345–356CrossRefGoogle Scholar
  17. 17.
    Stolyarova VL, Zhegalin DO, Stolyar SV (2004) Mass spectrometric study of the thermodynamic properties of melts in the CaO–TiO2–SiO2 system. Russ Glass Phys Chem 30(2):142–150CrossRefGoogle Scholar
  18. 18.
    Lopatin SI, Semenov GA (2001) Thermochemical study of gaseous salts of oxygen-containing acids: XI. alkaline-earth metal titanates. Russ J General Chem 71(10):1522–1526CrossRefGoogle Scholar
  19. 19.
    Shornikov SI, Archakov IY, Chemekova TY (2000) A mass spectrometric study of vaporization and phase equilibria in the Al2O3–SiO2 system. Russ J Phys Chem A 74(5):677–683Google Scholar
  20. 20.
    Semenov GA (1969) The evaporation of titanium dioxide. Russ Inorg Mater 5(1):67–73Google Scholar
  21. 21.
    Warren JW (1950) Measurement of appearance potentials of ions produced by electron impact, using a mass spectrometer. Nature 165(4203):810–811CrossRefGoogle Scholar
  22. 22.
    Gurvich LV, Karachevtsev GV, Kondratev VN, Lebedev YA, Medvedev VA, Potapov VK, Khodeev YS (1974) Bond dissociation energies, ionization potentials, and electron affinity. Nauka, MoscowGoogle Scholar
  23. 23.
    Shornikov SI (2002) Thermodynamic study of the mullite solid solution region in the Al2O3–SiO2 system by mass spectrometric techniques. Geochem Int 40:S46–S60Google Scholar
  24. 24.
    Komlev GA (1964) On determination of saturated steam pressure by effusion method. Russ J Phys Chem 38(11):2747–2748Google Scholar
  25. 25.
    Shornikov SI (2015) Vaporization coefficients of oxides contained in the melts of Ca–Al–inclusions in chondrites. Geochem Int 53(12):1080–1089CrossRefGoogle Scholar
  26. 26.
    Shornikov SI, Yakovlev OI (2015) Study of complex molecular species in the gas phase over the CaO–MgO–Al2O3–TiO2–SiO2 system. Geochem Int 53(8):690–699CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations