Advertisement

Thermochemical Data of Selected Phases in the FeOx–FeSO4–Fe2(SO4)3 System

  • Fiseha TesfayeEmail author
  • In-Ho Jung
  • Min-Kyu Paek
  • Mykola Moroz
  • Daniel Lindberg
  • Leena Hupa
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

Several recent studies have shown the potential of oxy-fuel combustion to reduce NOx(gas) and SO2(gas) emissions. However, the mechanisms through which SO2(gas) reduction takes place has yet to be fully understood. Therefore, the development of oxy-sulfate thermodynamic database for a better understanding and control of SO2(gas) emission during oxy-fuel combustion processes is essential. The focus of this research is on the thermodynamic modelling of the iron oxide–sulfate system with the FactSage 7.2 software package. Thermodynamic properties of selected phases in the FeOx–FeSO4–Fe2(SO4)3 system were critically reviewed, compiled and assessed over a wide temperature range (298–2000 K) to obtain accurate thermodynamic description of the system at different temperatures. New Cp functions, which include the recent experimental data, were optimized. The obtained results are presented and discussed.

Keywords

Sulfate Sulfur dioxide Decomposition reaction Thermochemical data 

Notes

Acknowledgements

The authors are grateful to the Academy of Finland for financial support. This work was made under the project “Thermodynamic investigation of complex inorganic material systems for improved renewable energy and metals production processes” (Decision number 311537) as part of the activities of the Johan Gadolin Process Chemistry Center at Åbo Akademi University. This work is also a part of the project clean and efficient utilization of demanding fuels (CLUE), with support from the industrial partners: ANDRITZ, Fortum, International Paper, UPM-Kymmene Corporation, and Valmet Technologies Oy.

References

  1. 1.
    Bale CW et al (2009) FactSage 7.2 thermochemical software and databases—recent developments. Calphad 33:295–311CrossRefGoogle Scholar
  2. 2.
    Hidayat T, Shishin D, Jak E, Decterov S (2015) Thermodynamic reevaluation of the Fe-O system. Calphad 48:131–144CrossRefGoogle Scholar
  3. 3.
    Walder P, Pelton AD (2005) Thermodynamic modeling of the Fe-S system. J Phase Equilib Diffus 26:23–38CrossRefGoogle Scholar
  4. 4.
    Shishin D, Jak E, Decterov SA (2015) Critical assessment and thermodynamic modeling of the Fe-O-S System. J Phase Equilib Diffus 36:224–240CrossRefGoogle Scholar
  5. 5.
    Barany R, Adami LH (1965) Heats of formation of anhydrous ferric sulfate and indium sulfate. US Bur Mines Rep Invest 6687:8Google Scholar
  6. 6.
    Pankratz LB, Weller WW (1969) Thermodynamic data for ferric sulfate and indium sulfate. US Bur Mines Rep Invest 7280:9Google Scholar
  7. 7.
    Majzlan J et al (2005) Thermodynamics of monoclinic Fe2(SO4)3. J Chem Thermodyn 37:802–809CrossRefGoogle Scholar
  8. 8.
    Moore GE, Kelley KK (1942) The specific heats at low temperatures of anhydrous sulfates of iron, magnesium, manganese, and potassium. J Am Chem Soc 64:2949–2951CrossRefGoogle Scholar
  9. 9.
    Frazer BC, Brow PJ (1962) Antiferromagnetic structure of CrVO4 and the anhydrous sulfates of divalent Fe, Ni, and Co. Phys Rev 125(4):1283–1291CrossRefGoogle Scholar
  10. 10.
    Kirfel A, Schafer W, Will G, Buschow KHJ (1977) The high-temperature polyrnorph β-FeSO4. Phys Stat Sol (a) 40:447CrossRefGoogle Scholar
  11. 11.
    Hemingway BS, Seal RR II, Chou I.-M (2002) Thermodynamic data for modeling acid mine drainage problems: compilation and estimation of data for selected soluble iron-sulfate minerals. US Geological Survey Open-File Report, 02–161Google Scholar
  12. 12.
    Thomsen J (1886) Thermochemische untersuchunger. Verlag von Johann Ambrosius Barth, LeipzigGoogle Scholar
  13. 13.
    Chase, MW (ed) (1998) NIST-JANAF thermochemical tables. J Phys Chem Ref Data, Monograph No. 9 Part II:959–1951Google Scholar
  14. 14.
    D’Ans J (1905) PhD. dissertation, Darmstadt, Data quoted by B. Neumann and G. Heintke, loc. CitGoogle Scholar
  15. 15.
    Greulich E (1927) Z Anorg Chem 168:197–202CrossRefGoogle Scholar
  16. 16.
    Neumann B, Heintke G (1937) Z Elektrochem 43:246Google Scholar
  17. 17.
    Keppeler G, D’Ans J (1980) Z Phys Chem 62:89Google Scholar
  18. 18.
    Wöhler L, Plüddemann W, Wöhler P (1908) Eine neue Methode zur Tensionsbestimmung von Sulfaten. Ber Deut Chem Ges 41:703–717CrossRefGoogle Scholar
  19. 19.
    Bodenstein M, Suzuki T (1910) Z Elektrochem 16:912Google Scholar
  20. 20.
    Wöhler L, Grünzweig M (1913) Die Sulfat-Tensionen und die Affinität der seltenen Erden. Ber Deut Chem Ges 46:1726–1732CrossRefGoogle Scholar
  21. 21.
    Grunzweig M (1913) PhD dissertation, Darmstadt, GermanyGoogle Scholar
  22. 22.
    Blanks RF (1961) PhD dissertation, University of Melbourne, AustraliaGoogle Scholar
  23. 23.
    Ingraham TR (1963) Internal Rept. EMT-63-17, Department of Mines and Technical Surveys, Ottawa, CanadaGoogle Scholar
  24. 24.
    Kellogg HH (1964) Critical review of sulfation equilibria. Trans TMS-AIME 230:1622–1644Google Scholar
  25. 25.
    Knacke O, Kubaschewski O, Hesselman K (1991) Thermochemical properties of inorganic substances, 2nd edn. Springer, Berlin, (KKH 91) pp. 1–1113Google Scholar
  26. 26.
    Southard JC, Shomate CH (1942) Heat of formation and high-temperature heat content of manganous oxide and manganous sulfate. High-temperature heat content of manganese. J Am Chem Soc 64(8):1770–1774CrossRefGoogle Scholar
  27. 27.
    Warner A, Ingraham TR (1960) Decomposition pressures of ferric sulphate and aluminum sulphate. Can J Chem 38:2196–2202CrossRefGoogle Scholar
  28. 28.
    Masset P, Poinso J-Y, Poignet J-C (2006) TG/DTA/MS Study of the thermal decomposition of FeSO4·6H2O. J Therm Anal Calorim 83:457–462CrossRefGoogle Scholar
  29. 29.
    Gallagher PK, Johnson DW, Schrey F (1970) Thermal decomposition of Iron(II) sulfates. J Am Ceram Soc 666–670.  https://doi.org/10.1111/j.1151-2916.1970.tb12038.x. Accessed 26 July 2018CrossRefGoogle Scholar
  30. 30.
    Pannetier G, Bregeault JM, Djega-Maria-Dassou Gerald (1964) Thermal dissociation of ferrous sulfate heptahydrate. C R Acad Sci 258:2832–2835Google Scholar
  31. 31.
    Saflullin NS, Gitis EB, Panesenko NM (1968) Thermochemical transformations of FeSO4·7H2O during heating in oxidizing and inert media. Russ J Inorg Chem 13:1493Google Scholar
  32. 32.
    Skeaff JM, Espelund AW (1973) An E.M.F. method for the determination of sulphate-oxide equilibria results for the Mg, Mn, Fe, Ni, Cu and Zn systems. Can Metall Q 12:445–454CrossRefGoogle Scholar
  33. 33.
    Hsieh KC, Chang YA (1986) A Solid-State Emf Study of Ternary Ni-S-O, Fe-S-O, and Quaternary Fe-Ni-S-O. Metall Trans B 17:133–146CrossRefGoogle Scholar
  34. 34.
    Musbah OA, Chang YA (1988) A solid-state EMF study of the Fe-S-O and Co-S-O ternary systems. Oxid Met 30:329–343CrossRefGoogle Scholar
  35. 35.
    Kobe KA, JrEJ Couch (1954) Enthalpy-concentration diagram for system ferrous sulfate–water. Ind Eng Chem 46:377–381CrossRefGoogle Scholar
  36. 36.
    Rosenqvist T, Hofseth A (1980) Phase relations and thermodynamics of the copper-iron-sulfur-oxygen system at 700–1000 °C. Scand J Metall 9:129–138Google Scholar
  37. 37.
    Schaefer SC (1980) Electrochemical determination of gibbs energies of formation of manganese sulfide and iron sulfide (Fe0.9S), RI, 8486, Albany Researgh Center Bureau of Mines, Albany, ORGoogle Scholar
  38. 38.
    Espelund AW, Jynge H (1977) The zinc-iron-sulfur-oxygen system equilibriums between sphalerite or wurtzite, pyrrhotite, spinel, zinc oxide and a gas phase. Scand J Metall 6:256–262Google Scholar
  39. 39.
    Jacob KT, Iyengar GNK (1986) Thermodynamic study of Fe2O3-Fe2(SO4)3 equilibrium using an oxyanionic electrolyte (Na2SO4-I). Metall Trans B 17:323–329CrossRefGoogle Scholar
  40. 40.
    Alcock CB, Sudo K, Zador S (1965) The free energies of formation of the sulfates of cobalt, copper, nickel, and iron. Trans TMS-AIME 233:655–661Google Scholar
  41. 41.
    Tesfaye F et al (2014) Thermal stabilities and properties of equilibrium phases in the Pt-Te-O system. J Chem Thermodyn 106:47–58CrossRefGoogle Scholar
  42. 42.
    Barin I (1989) Thermochemical data of pure substances, Part II. VCH Verlagsgesellschaft, Weinheim/VCH Publishers, New YorkGoogle Scholar
  43. 43.
    Sadakane K, Kawakami M, Goto KS (1977) Measurement of the standard free energy of formation of sulfides and sulfates using oxygen concentration cells with ZrO2·CaO. Tetsu-to-Hagané 63(3):432–440CrossRefGoogle Scholar
  44. 44.
    Turkdogan ET (ed) (1980) Physical chemistry of high temperature technology. Academic Press, New YorkGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Fiseha Tesfaye
    • 1
    • 2
    Email author
  • In-Ho Jung
    • 2
  • Min-Kyu Paek
    • 2
  • Mykola Moroz
    • 1
  • Daniel Lindberg
    • 3
  • Leena Hupa
    • 1
  1. 1.Laboratory of Inorganic ChemistryÅbo Akademi University, Johan Gadolin Process Chemistry CentreTurkuFinland
  2. 2.Department of Materials Science and EngineeringSeoul National UniversitySeoulRepublic of Korea
  3. 3.Department of Chemical and Metallurgical Engineering (CMET), School of Chemical EngineeringAalto UniversityAaltoFinland

Personalised recommendations